Những câu hỏi liên quan
PK
Xem chi tiết
NT
2 tháng 3 2017 lúc 11:30

Từ dãy trên ta có:

(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\))                  < vì không có cách nhập hỗn số nên mình đổi ra phân số >

= 2 + 3 + 4 + 5 + 6 + ..........................+ 51

Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số 

Chia ra : 50 : 2 = 25 cặp 

ta có( 51 + 2 ) x 25 =1325

Vậy tổng trên có kết quả bằng 1325       (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )

Bình luận (0)
H24
Xem chi tiết
H24
3 tháng 3 2016 lúc 14:01

Ta có : 

\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)

\(\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+\left(3\frac{3}{4}+\frac{1}{4}\right)+...+\left(49\frac{49}{50}+\frac{1}{50}\right)+\left(50\frac{50}{51}+\frac{1}{51}\right)\)

\(2+3+4+5+...+49+50+51\)

\(\left(\frac{51-2}{1}+1\right).\frac{51+2}{2}\)

\(50.26,5\)

= 1325

Bình luận (0)
LN
Xem chi tiết
NT
28 tháng 2 2017 lúc 16:55

\(=\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+...+\left(50\frac{50}{51}+\frac{1}{51}\right)\)

\(=2+3+...+51\)

\(=\frac{\left(2+51\right)50}{2}\)

\(=1325\)

Bình luận (0)
PH
Xem chi tiết
PA
12 tháng 2 2016 lúc 9:27

kq cuối nk =1326 (vừa nhìn nhầm )

Bình luận (0)
PA
12 tháng 2 2016 lúc 9:24

=2550 nha (hình như thế) 

Bình luận (0)
PA
12 tháng 2 2016 lúc 9:25

nhầm =2601

Bình luận (0)
LN
Xem chi tiết
BC
27 tháng 2 2017 lúc 14:48

\(1\dfrac{1}{2}+2\dfrac{2}{3}+3\dfrac{3}{4}+...+50\dfrac{50}{51}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{51}\)

\(=\left(1\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(2\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(3\dfrac{3}{4}+\dfrac{1}{4}\right)+...+\left(50\dfrac{50}{51}+\dfrac{1}{51}\right)\)

\(=2+3+4+...+51\)

\(=\dfrac{50\left(51+2\right)}{2}\)

=1325

Bình luận (0)
LH
DD
19 tháng 2 2017 lúc 18:39

1\(\frac{1}{2}\)+2\(\frac{2}{3}\)+3\(\frac{3}{4}\)+4\(\frac{4}{5}\)+.......+50\(\frac{50}{51}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+....+\(\frac{1}{51}\)

=(1\(\frac{1}{2}\)+\(\frac{1}{2}\))+(2\(\frac{2}{3}\)+\(\frac{1}{3}\))+(3\(\frac{3}{4}\)+\(\frac{1}{4}\))+.......+(50\(\frac{50}{51}\)+\(\frac{1}{51}\))

=2+3+4+.....+51

=1325

Vậy:1\(\frac{1}{2}\)+2\(\frac{2}{3}\)+3\(\frac{3}{4}\)+4\(\frac{4}{5}\)+.......+50\(\frac{50}{51}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+\(\frac{1}{5}\)+....+\(\frac{1}{51}\)=1325

Học Tốt!vui

Bình luận (0)
QD
20 tháng 2 2017 lúc 17:33

\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+4\frac{4}{5}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{51}\)

\(=1+\frac{1}{2}+2+\frac{2}{3}+3+\frac{3}{4}+...+50+\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)

\(=\left(1+2+3+...+50\right)+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)+...+\left(\frac{50}{51}+\frac{1}{51}\right)\)

\(=\frac{50.51}{2}+1+1+1+...+1\) ( có 50 số 1 )

\(=1275+50\)

\(=1325\)

Bình luận (0)
VV
21 tháng 2 2017 lúc 15:09

cứ nhóm vào ta được

2+3+......+50+51

suy ra biểu thức trên bằng 1325

Bình luận (0)
NP
Xem chi tiết
H24
18 tháng 2 2019 lúc 19:55

\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{50}}\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)

Bình luận (0)
BK
Xem chi tiết
H24
19 tháng 3 2020 lúc 11:46

\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(3B+B=\left(-1+\frac{1}{3}-...-\frac{1}{3^{50}}\right)+\left(-\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)

hok tốt!!

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
TN
11 tháng 2 2018 lúc 13:13

\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

=> \(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

=> \(4B=-1-\frac{1}{3^{51}}=>B=-\frac{1+\frac{1}{3^{51}}}{4}\)

Bình luận (0)