Những câu hỏi liên quan
NH
Xem chi tiết
DN
22 tháng 9 2016 lúc 14:52

mẫu số = nhau nên tử số = nhau

x-4 -1 = 10-2x

3x = 10+4+1

3x = 15

x = 5

Bình luận (0)
BD
22 tháng 9 2016 lúc 15:06

Giá trị x thỏa mãn : \(\frac{x-4}{2015}\)-\(\frac{1}{2015}\)=\(\frac{10-2x}{2015}\)

mẫu số bằng nhau nên tử số cũng bằng  nhau

x-4 -1 = 10-2x

3x = 10+4+1

3x = 15

x = 5

Bình luận (0)
NV
Xem chi tiết
TD
29 tháng 10 2016 lúc 20:57

ta kó:
\(\frac{x-4}{2015}-\frac{1}{2015}=\frac{10-2x}{2015}\)

=>\(\frac{x-4-1}{2015}=\frac{10-2x}{2015}\)

=>x-5=10-2x

=>3x=15

=>x=5

Bình luận (0)
NT
16 tháng 12 2016 lúc 19:49

Sai rồi Trịnh Xuân Diện ơi.

Bình luận (0)
NN
5 tháng 2 2017 lúc 21:30

x=5 đúng rùi đấy mình làm rùi

Bình luận (0)
HQ
Xem chi tiết
DL
29 tháng 10 2016 lúc 21:00

\(\frac{x-4-1}{2015}=\frac{10-2x}{2015}\)

=> x-4-1=10-2x

x+2x=10+4+1

3x=15

x=15/3

x=5

Vậy x=5

Bình luận (0)
NC
Xem chi tiết
NV
Xem chi tiết
HN
28 tháng 10 2016 lúc 11:15

Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0

Tới đây bạn tự làm nhé :)

Bình luận (0)
BM
Xem chi tiết
PH
13 tháng 10 2018 lúc 15:31

     

     \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)

\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)

Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)

-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)

Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)

Bình luận (0)
H24
14 tháng 10 2018 lúc 8:37

tự túc

Bình luận (0)
ZZ
Xem chi tiết
NP
16 tháng 8 2016 lúc 8:27

\(\frac{2}{1.2}+\frac{2}{2.3}+..........+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)

\(\Rightarrow2\left(\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{x\left(x+1\right)}\right)=\frac{4028}{2015}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{x}-\frac{1}{x+1}=\frac{4028}{2015}:2\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2014}{2015}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2014}{2015}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)

\(\Rightarrow x+1=2015\Rightarrow x=2014\)

Bình luận (0)
OO
16 tháng 8 2016 lúc 8:31

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)

\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}\right)=1\frac{2013}{2015}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=1\frac{2013}{2015}\div2\)

\(1-\frac{1}{x+1}=\frac{2014}{2015}\)

\(\frac{1}{x+1}=1-\frac{2014}{2015}\)

\(\frac{1}{x+1}=\frac{1}{2015}\)

\(x+1=2015\)

\(x=2015-1\)

\(x=2014\)

Bình luận (0)
TV
5 tháng 11 2017 lúc 9:54

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

Bình luận (0)
KO
Xem chi tiết
VK
Xem chi tiết
ND
28 tháng 11 2015 lúc 16:21

\(A=1-\frac{1}{2015}\)

\(A+\frac{1}{2015}=2x\Leftrightarrow1-\frac{1}{2015}+\frac{1}{2015}=2x\Leftrightarrow2x=1\Rightarrow x=\frac{1}{2}\)

Bình luận (0)
DM
28 tháng 11 2015 lúc 19:44

A=1\(-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)

=> A= \(1-\frac{1}{2015}\)

A=\(\frac{2014}{2015}\)

A+\(\frac{1}{2015}=2x\)

<=>\(\frac{2014}{2015}+\frac{1}{2015}=2x\)

=>\(2x=1\)

\(=>x=\frac{1}{2}\)

Bình luận (0)