Rút gọn phân thức:
\(\frac{x^2+5x+6}{x^2+7x+12}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Rút gọn phân thức:
\(\frac{2x^2+2x}{x^2+2x+1}\) \(\frac{x^2+5x+6}{x^2+7x+12}\)
bài này dễ lắm, mk làm 1 câu là bn làm câu sau dc hà
bn thấy tử số có 2x chung, vạy tử là; 2x2 +2x = 2x(x+1)
mẫu số là hằng đẳng thức (x+1)2 = x2 +2x+1
vậy ta có: tử/mẫu = 2x(x+1)/(x+1)2 = 2x/x+1
Rút gọn biểu thức: M=\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)
M = 1/(x+1).(x+2) + 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/x+5
= 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 = 1/x+1
k mk nha
Rút gọn phân thức:
\(\frac{x^3-7x+6}{x^3+5x^2-2x-24}\)
A=\(\frac{x^3-7x+6}{x^3+5x^2-2x-24}\)=\(\frac{x^3-2x^2+2x^2-4x-3x+6}{x^3-2x^2+7x^2-14x+12x-24}\)=\(\frac{x^2\left(x-2\right)+2x\left(x-2\right)-3\left(x-2\right)}{x^2\left(x-2\right)+7x\left(x-2\right)+12\left(x-2\right)}\)=\(\frac{\left(x-2\right)\left(x^2+2x-3\right)}{\left(x-2\right)\left(x^2+7x+12^{^{^{^{^{^{^{^{^{ }}}}}}}}}\right)}\)=\(\frac{\left(x-2\right)\left(x^2-x+3x-3\right)}{\left(x-2\right)\left(x^2+3x+4x+12\right)}\)=\(\frac{\left(x-2\right)\left(x-1\right)\left(x+3\right)}{\left(x-2\right)\left(x+4\right)\left(x+3\right)}\)=\(\frac{x-1}{x+4}\)
Rút gọn
A=\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9-10}\)
Rút gọn phân thức : \(\frac{x^2+7x+12}{4x^2+12x}\)
\(B=\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}\)
a.Tìm điều kiện xác định và rút gọn B
rút gọn phân thức \(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
Rút gọn các phân thức sau
1) \(\frac{x^2-5x-6}{x^2-x-6}\)
2) \(\frac{x^2-11x-12}{3x^3-4x^2-13x-6}\)
Bài 1) Rút gọn biểu thức
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
Bài 2) Chứng minh giá trị của biểu thức không phụ thuộc vào biến
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right).\left(\frac{x^2+5x}{5}\right)\)
Bài 1:
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Bài 2:
đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)
Xét BT trái ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+5}\)
\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)
GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến
=> đpcm
Bài 1.
( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )
= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
Bài 2. ĐKXĐ tự ghi nhé :))
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)
\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)
=> đpcm