CHO TỔNG B=1+[2+3+4+...+98+99]
HƯỚNG DẪN; Tổng B gồm 99 số hạng, nếu ta chia các số hạng đó thành cặp[ 1 cặp có 2 số hạng thì được 49 cặp và còn dư1 số hạng, cặp thứ 49 thì gồm 2 số hàng nào, số hạng dư là bao nhiêu
AI NGHĨ RA TRƯỚC NÀO^-^
Tính B = 1 + 2+ 3+ ...+ 98+99
B = 1 + (2 + 3 + 4+...+ 98 + 99). Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) +..+ (51 + 50) = 49.101 = 4949 khi đó B = 1 + 4949 = 4950
Tính B = 1 + 2+ 3+ ...+ 98+99B = 1 + (2 + 3 + 4+...+ 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) +..+ (51 + 50) = 49.101 = 4949
khi đó B = 1 + 4949 = 4950
Tính tổng
a, 1 + 2 = 3 + 4 + ....... + 98 + 99
b, 1 + 3 + 5 + 7 + .......... + 97 +99
c, 2 + 4 + 6 + 8 +.........+ 96 + 98
1) 1 + 2 + 3 + 4 + ........ + 99
= 99 . (99 + 1) : 2
= 99 . 100 : 2
= 99.50 = 4950
giúp mình với
tính tổng
a, Biểu thức A=1*2+2*3+3*4+....+98*99
b, Biểu thức B=1 mũ 2 + 2 mũ 2 + 3 mũ 2+....+97 mũ 2 + 98 mũ 2
c, Biểu thức C=1*99+2*98+3*97*....*98*2+99*1
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Tính tổng:
B= 1/2+1/3+1/4+...+1/100
99/1+98/2+...+2/98+1/99
\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{2}{98}+\frac{1}{99}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{98}{2}+1+\frac{97}{3}+1+...+\frac{2}{98}+1+\frac{1}{99}+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
A= 99/1+98/2+...+2/98+1/99
<=>A= (99/1-98)+(98/2+1)+....+(2/98+1)+(1/99+1)
<=>A= 100/100+100/2+...+100/98+100/99
A= 100( 1/100+1/2+...+1/98+1/99)
Vậy B=1/100
-----------------------Good luck-------------------
tính tổng B= 1/1*2*3*4 +1/2*3*4*5 +...+1/97*98*99*1000
Bx3=1x3/1x2x3x4+1x3/2x3x4x5+...+1x3/97x98x99x100
Bx3=3/1x2x3x4+3/2x3x4x5+...+3/97x98x99x100
Bx3=1/1x2x3-1/2x3x4+1/2x3x4-1/3x4x5+...+1/97x98x99-1/98x99x100
BX3=1/1x2x3-1/98x99x100
BX3=1/6-1/970200
Bx3=161700/970200-1/970200
Bx3=161399/970200
B=161699/970200:3
B=161699/970200x1/3
B=161699/2910600
tính tổng B= 1/1*2*3*4 +1/2*3*4*5 +...+1/97*98*99*1000
\(B=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+....+\frac{1}{97.98.99.100}\)
\(B=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{100-97}{97.98.99.100}\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(B=\frac{1}{3}\cdot\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
\(B=\frac{1}{3}\cdot\frac{161699}{970200}=\frac{161699}{2910600}\)
Cho A = 100+1/99+2/98+...99/1
B = 100-1/2-2/3-3/4-...-98/99
Tính A/B
Tính tổng
a) -1+3-5+7-...+97-99
b) 1+2-3-4+...+97+98-99-100
bạn có thể trình bày ra cho mình k