(1-2/2.3).(1-2/3.4).(1-2/4.5)....(1-2/101.102)
Tính tổng 1/2.3 - 2/3.4 + 3/4.5 +....+99/100.101 - 100/101.102
giúp mình
S=2/1.2+2/2.3+2/3.4+2/4.5+.........2/101.102
S = 2/1×2 + 2/2×3 + 2/3×4 + 2/4×5 + ... + 2/101×102
B = 2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/101×102)
B = 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/101 - 1/102)
B = 2 × (1 - 1/102)
B = 2 × 101/102
B = 101/51
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(=2.\left(1-\frac{1}{101}\right)\)
\(=2.\frac{100}{101}=\frac{200}{101}\)
\(y=\frac{1}{2.3}-\frac{2}{3.4}+\frac{3}{4.5}-...+\frac{99}{100.101}-\frac{100}{101.102}\)
Tính giá trị biểu thức:
M=\(\left(1-\frac{2}{2.3}\right)\).\(\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{101.102}\right)\)
GIÚP MIK NHA MIK ĐG CẦN GẤP.CẢM ƠN!!
Xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Khi đó:
\(1-\frac{2}{2.3}=\frac{1.4}{2.3}\) ; \(1-\frac{2}{3.4}=\frac{2.5}{3.4}\) ; ... ; \(1-\frac{2}{101.102}=\frac{100.103}{101.102}\)
\(\Rightarrow M=\frac{1.4}{2.3}\cdot\frac{2.5}{3.4}\cdot\cdot\cdot\frac{100.103}{101.102}\)
\(M=\frac{\left(1.2...100\right).\left(4.5...103\right)}{\left(2.3...101\right).\left(3.4...102\right)}=\frac{103}{101.3}=\frac{103}{303}\)
Vậy \(M=\frac{103}{303}\)
Tính tổng hoặc hiệu sau:
A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+..................+\(\frac{1}{100.101}\)+\(\frac{1}{101.102}\)
B=\(\frac{1}{1.2}\)-\(\frac{1}{2.3}\)-\(\frac{1}{3.4}\)-\(\frac{1}{4.5}\)- .....................-\(\frac{1}{100.101}\)-\(\frac{1}{101.102}\)
A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102
A=1-1/102=102/102-1/102=101/102
ý b thì chờ mình tí tìm cách lập luận đã nhé
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)
\(A=1-\frac{1}{102}\)
\(A=\frac{101}{102}\)
B=1/1.2-1/2.3-1/3.4-1/4.5-.......1/100.101-1/101.102
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......+1/100-1/101+1/101-1/102
B=1-1/102
(1-2/2.3)(1-2/3.4)(1-2/4.5)...(1-2/99.100)
S = ( 1-2/2.3).(1-2/3.4).(1-2/4.5).....(1-2/2015.2016)
E=((2/2.3-1).(2/3.4-1).(2/4.5-1).....(2/2019.2020-1)
1+2.(1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=3/2
1+2.( 1/2-1/3+1/3-1/4+....+1/(x-1)-1/x+1)=3/2
1+2.(1/2-1/x+1)=3/2
1-2/x+1=3/2-1
tự tính