tìm số abc biết rằng a < b < c và abc + bca + cab = 777
Tìm số ABC biết rằng a<b<c và abc+bca+cab=777
Ta có :
\(abc+bca+cab=777\)
\(\Rightarrow111.\left(a+b+c\right)=777\)
\(\Rightarrow a+b+c=777:111\)
\(\Rightarrow a+b+c=7\)
Đến đây bn tự tìm tiếp nha :V
~ Hok tốt ~
abc+bca+cab=100*a+10*b+c+100*b+10*c+a+100*c+10*a+b=100*(a+b+c)+10*(a+b+c)+(a+b+c)=111*(a+b+c)=777
Suy ra:
a+b+c=7=>a=1,b=2,b=4
Vậy số cần tìm là 124
Tìm số abc biết rằng a<b<c và abc + bca + cab = 777
a= 1 ; b=2 ; c=4
124 + 241 + 412 = 777
tìm abc biết A < B < C va abc +bca +cab =777
Cho a,b,c la cac chu so khac nhau va khac 0.Tim abc biet
a. abc=11.(a+b+c)
b. abc+bca+cab lamot so chinh phuong
c. abc+bca+cab=777
tìm abc biết abc+bca+cab=777
Tìm số tự nhiên biết số đó :5 dư 2,:8 dư 5,hiệu 2 thương là 423
cho số abc biết a<b<c và abc +bca +cab =777
Tìm a,b,c thuộc N biết
abc +bca +cab=777 với a,b,c khác nhau
mik cần gấp
abc + bca + acb = 777
111 . ( a + b + c ) = 7 . 111
a + b + c = 7
vì \(0< a+b+c\le27\) và a,b,c khác nhau
Từ đó ta tìm được các chữ số a,b,c khác nhau và a + b + c = 7
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b=777
=111a + 111b + 111c = 777
=> 111(a+b+c) = 777
=> a+ b + c = 777 : 111
=> a+ b + c = 7
tiếp theo bn tự lm nha!
abc là tích hay là số abc vậy bạn
1/ Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng: S không phải là số chính phương
2/ Tìm các số có ba chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
3/ Tìm 3 số tự nhiên a, b, c (a > b > c > 0), biết rằng: \(\overline{abc}+\overline{bca}+\overline{cab}=666\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương