Chứng minh rằng B= 1/2² + 1/3² + 1/4² +...+ 1/10² < 1
Chứng minh rằng B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{4^2}\) + ... + \(\dfrac{1}{10^2}\) < 1
Nhận xét:
1/2 mũ 2 + 1/3 mũ 2 + 1/4 mũ 2 + ... + 1/10 mũ 2 <1/1.2 + 1/2.3 + 1/3.4 + ... + 1/ 9.10
Ta có:
A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/9.10
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 + ... + 1/9 - 1/10
A = 1 - 1/10
A = 9/10
=> A < 1
Mà S < A
=> S < 1
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
chứng minh rằng B=(1/2)^2+(1/3)^2+(1/4)^2+...+(1/10)^2 <1
a) (x+1) +(x+2) +...+(x+100) = 5750
100.x + (1+2+...+100) =5750
100.x + (100.101):2 = 5750
100.x + 5050 = 5750
100x= 700
x= 7
B=1/2*3/4*5/6*...*99/100; Chứng minh rằng 1/15<B<1/10
Bài 1: Chứng minh rằng A<B<1 biết:
A = 3/1.4+3/4. … . 3/n.(n+1).
B = 1/^2+1/3^2+1/4^2+ … + 1/n^2.
Bài 2: Cho S = 3/10+3/11+3/12+3/13+3/14. Chứng minh rằng 1<S<2. Từ đó suy ra S không phải là số tự nhiên.
Bài 3: Chứng minh rằng 3/5<S<4/5 với S = 1/31+1/32+1/33+…+1/60.
Các bạn nhớ giải đầy đủ và theo cách của Toán lớp 6 nâng cao nhé!
1. Chứng minh rằng : 1/5 +1/14 +1/28 +1/44 +1/61+ 1/85 +1/91 < 1/2
2. Chứng tỏ rằng : 1/5+1/6+1/7+...+1/16+1/17 < 2
3. Tính: A= [878787/9595953+ (-8787/9595)] * 1234621/5678765
4. So sánh : 10^8+2/10^8-1 ; B= 10^8/10^8-3
A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì\(10^8-1>10^8-3\)
\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
Vậy \(A< B\)