Những câu hỏi liên quan
H24
Xem chi tiết
HL
Xem chi tiết
TT
Xem chi tiết
RN
Xem chi tiết
BN
Xem chi tiết
TA
12 tháng 7 2018 lúc 16:49

Cậu vào câu hỏi tương tự có đấy

Bình luận (0)
DK
Xem chi tiết
XO
19 tháng 10 2020 lúc 13:15

Đặt A = -x2 + 2xy - 4y2 + 2x + 10y - 8

= -[(x2 - 2xy + y2) - 2(x - y) + 1] - (3y2 - 12y + 12) + 5

= -[(x - y - 1)2 + 3(y - 2)2] + 5\(\le\)5

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy Max A = 5 <=> x = 3 ; y = 2

Bình luận (0)
 Khách vãng lai đã xóa
LD
19 tháng 10 2020 lúc 13:25

-x2 + 2xy - 4y2 + 2x + 10y - 8 

= -( x2 - 2xy + y2 - 2x + 2y + 1 ) - ( 3y2 - 12y + 12 ) + 5

= -[ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] - 3( y2 - 4y + 4 ) + 5

= -[ ( x - y )2 - 2( x - y ) + 12 ] - 3( y - 2 )2 + 5

= -( x - y - 1 )2 - 3( y - 2 )2 + 5

Ta có : \(\hept{\begin{cases}-\left(x-y-1\right)^2\\-3\left(y-2\right)^2\end{cases}}\le0\forall x,y\Rightarrow-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy GTLN của biểu thức = 5 <=> x = 3 ; y = 2

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
LT
Xem chi tiết
H24
3 tháng 8 2018 lúc 19:40

\(D=-x^2+2xy-4y^2+2x+10y-8\)

\(-D=x^2-2xy+4y^2-2x-10y+8\)

\(-D=\left(x^2-2xy+y^2\right)+3y^2-2x-10y+8\)

\(-D=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+3\left(y^2-4y+4\right)-5\)

\(-D=\left(x-y-1\right)^2+3\left(y-2\right)^2-5\)

Mà  \(\left(x-y-1\right)^2\ge0\forall x;y\)

      \(\left(y-2\right)^2\ge0\forall y\Rightarrow3\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow-D\ge-5\)

\(\Leftrightarrow D\le5\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy  \(D_{Max}=5\Leftrightarrow\left(x;y\right)=\left(3;2\right)\)

Bình luận (0)
KT
3 tháng 8 2018 lúc 19:45

\(D=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2+y^2+1-2xy+2y-2x\right)-3\left(y^2-4y+4\right)+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

Vậy MAX  \(D=5\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Bình luận (0)
NH
Xem chi tiết