Những câu hỏi liên quan
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NN
2 tháng 12 2015 lúc 22:01

áp dụng tính chất : lx| = |-x|

|x|+|y|\(\ge\)|x+y|

ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4

vậy giá trị nhỏ nhất là 4

dấu = xảy ra khi tất cả cùng dấu

cậu nên mua quyển sách mình nói nêu là dân chuyên toán

Bình luận (0)
H24
2 tháng 12 2015 lúc 21:57

Thanh Nguyễn Vinh chi tiết giùm

Bình luận (0)
VL
Xem chi tiết
NK
3 tháng 12 2015 lúc 21:58

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

Bình luận (0)
NL
Xem chi tiết
ML
8 tháng 7 2015 lúc 13:10

Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.

Bình luận (0)
PT
31 tháng 3 2021 lúc 21:22

e hok lớp 6

mà bài này dễ có điều dài

Bình luận (0)
 Khách vãng lai đã xóa
VG
Xem chi tiết
H24
14 tháng 7 2018 lúc 15:31

PINK SHEP

Bình luận (0)
ND
Xem chi tiết
NA
Xem chi tiết
HS
6 tháng 8 2019 lúc 21:38

Ta đã biết với mọi x,y thuộc Q thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\).

Đẳng thức xảy ra khi \(xy\ge0\)

Ta có : \(A=\left|x-3\right|+\left|x-2\right|=\left|x-3\right|+\left|2-x\right|\ge\left|x-3+2-x\right|=\left|-1\right|=1\)

Vậy \(A\ge1\), A đạt giá trị nhỏ nhất là 1 khi \(2\le x\le3\)

Phải không ta???

Bình luận (0)
ND
6 tháng 8 2019 lúc 21:40

Ta có A=|x-3|+|x-2|

            = |3-x|+|x-2|

         \(\ge\)\(\left|3-x+x-2\right|\)=|1|=1

=> GTNN của A=1 \(\Leftrightarrow\left(3-x\right)\left(x-2\right)\ge0\)

                              \(\Leftrightarrow2\le x\le3\)

 Vậy Min A=1 khi \(2\le x\le3\)

tk mk nha*****CHÚC BẠN HỌC GIỎI*****
Bình luận (0)
MD
Xem chi tiết
LN
6 tháng 8 2019 lúc 21:52

A=\(\left|x-3\right|+\left|x-2\right|\)

A= \(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|\)

\(\ge\left|1\right|\)=1

vậy Amin=1 khi x=3 hoặc x=2

Bình luận (0)