Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LH
Xem chi tiết
NC
27 tháng 10 2019 lúc 18:34

Câu hỏi của Lee Min Ho - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
H24
16 tháng 11 2017 lúc 11:51

P=x2(y-z) + y2z - y2x + z2x-z2y

  =x2(y-z) + yz(y-z) - x(y-z)(y+z) 

  =(y-z)(x2+yz-xy-xz)

   =(y-z)[x(x-z)-y(x-z)]

  = (x-y)(y-z)(x-z)

Bình luận (0)
H24

P=x2(y-z)+y2(z-x)+z2(x-y) 

=x2(y-z)-y2[(y-z)+(x-y)]+z2(x-y)

=(y-z)(x2-y2)-(x-y)(y2-y2

=(y-z)(x+y)(x-y)-(x-y)(y+z)(y-z) 

=(y-z)(x-y)(x-z)

Bình luận (0)
OO
21 tháng 11 2017 lúc 18:48

Ta có :

\(P=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(P=x^2\left(y-z\right)+y^2z-xy^2+xz^2-yz^2\)

\(P=x^2\left(y-z\right)+\left(y^2z-yz^2\right)-\left(xy^2-xz^2\right)\)

\(P=x^2\left(y-z\right)\).............

Bình luận (0)
HN
Xem chi tiết
VC
12 tháng 9 2017 lúc 20:24

nâng cao phát triển toán 8 tập 1 mình ngại viết nên bạn vào đó xem nhé

Bình luận (0)
DT
Xem chi tiết
NC
27 tháng 10 2019 lúc 18:33

Câu hỏi của Lee Min Ho - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
HN
2 tháng 10 2016 lúc 22:47

\(4\left(1+x\right)\left(1+y\right)\left(1+x+y\right)-3x^2y^2=4\left(1+x+y+xy\right)\left(1+x+y\right)-3x^2y^2\)

\(=4\left(1+x+y\right)^2+4xy\left(1+x+y\right)+x^2y^2-4x^2y^2\)

\(=\left[2\left(1+x+y\right)+xy\right]^2-\left(2xy\right)^2=\left(2+2x+2y+xy-2xy\right)\left(2+2x+2y+xy+2xy\right)\)

\(=\left(2+2x+2y-xy\right)\left(2+2x+2y+3xy\right)\)

Bình luận (0)
NN
2 tháng 10 2016 lúc 22:56

giúp mình câu khác được ko? câu này mình biết làm òi

Bình luận (0)
NH
3 tháng 10 2016 lúc 19:45

rygghgjgfhgfhgfhgfnb45 - u6 

Bình luận (0)
H24
Xem chi tiết
ZZ
1 tháng 7 2019 lúc 17:51

Ây za,mik ko bt có đúng ko nhưng mik thử làm nhé.

Đặt \(x^4+y^4+z^4=a;x^2+y^2+z^2=b;x+y+z=c\)

\(\Rightarrow M=2a-b^2-2bc^2+c^4\)

\(M=2a-2b^2+b^2-2bc^2+c^4\)

\(M=2\left(a-b^2\right)+\left(b-c^2\right)^2\)

Mà:

\(a-b^2=-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(b-c^2=-2\left(xy+yz+zx\right)\)

Khi đó:

\(M=-4\left(x^2y^2+y^2z^2+z^2x^2\right)+4\left(xy+yz+zx\right)^2\)

\(M=-4x^2y^2-4y^2z^2-4z^2x^2+4x^2y^2++4y^2z^2+4z^2x^2+4z^2x^2+8x^2yz+8xy^2z+8xyz^2\)

\(M=8xyz\left(x+y+z\right)\)

Bình luận (0)
TN
Xem chi tiết
NC
27 tháng 10 2019 lúc 18:25

Câu hỏi của nguyễn khánh linh - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NL
Xem chi tiết
H24
17 tháng 12 2023 lúc 21:41

a, \(x^3-2x-y^3+2y\) (sửa đề)

\(=\left(x^3-y^3\right)-\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-2\right)\)

b, \(\left(x-y\right)\left(x+y\right)-4zx+4yz\)

\(=\left(x-y\right)\left(x+y\right)-\left(4zx-4yz\right)\)

\(=\left(x-y\right)\left(x+y\right)-4z\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-4z\right)\)

Bạn xem lại đề câu a giúp mình nha!

Bình luận (0)