Những câu hỏi liên quan
LS
Xem chi tiết
ND
23 tháng 7 2018 lúc 19:10

\(B=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right).\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(B=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(B=\frac{-\sqrt{x}-1}{\sqrt{x}}\). Vậy ....

Bình luận (0)
LS
Xem chi tiết
LS
Xem chi tiết
KT
23 tháng 7 2018 lúc 19:40

a)  ĐK:  a > 0;  b > 0

\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)

\(=\frac{\sqrt{a}+\sqrt{b}+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}-b\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)-b\)

\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}-b\)

\(=2\sqrt{b}-b\)

b)  \(A=1\)\(\Rightarrow\)\(2\sqrt{b}-b=1\)

                    \(\Leftrightarrow\)\(b-2\sqrt{b}+1=0\)

                   \(\Leftrightarrow\) \(\left(\sqrt{b}-1\right)^2=0\)

                   \(\Leftrightarrow\)\(\sqrt{b}-1=0\)

                   \(\Leftrightarrow\)\(\sqrt{b}=1\)

                   \(\Leftrightarrow\)\(b=1\)   (t/m ĐKXĐ)

Vậy  b=1

Bình luận (0)
LS
Xem chi tiết
TN
23 tháng 7 2018 lúc 18:38

a, \(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{x+\sqrt{x}}\) (ĐKXĐ: \(x>0\))

\(=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

b, \(\frac{A}{B}=\frac{2+\sqrt{x}}{\sqrt{x}}:\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(\frac{A}{B}>\frac{3}{2}\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{3}{2}>0\)

\(\Leftrightarrow\frac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)

\(\Leftrightarrow2-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

Kết hợp với điều kiện \(x>0\)ta có: \(0< x< 4\)

Vậy với \(0< x< 4\)thì \(\frac{A}{B}>\frac{3}{2}\)

Bình luận (0)
LS
Xem chi tiết
NK
27 tháng 7 2018 lúc 13:16

a) (Tự giải) ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

b) \(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

         \(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

         \(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

        \(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1-\frac{4}{\sqrt{x}-3}\)

c) Để Q là 1 số nguyên => \(1-\frac{4}{\sqrt{x}-3}\in Z\) 

                                    Mà \(1\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

                                     => \(4⋮\sqrt{x}-3\)

Hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

ta lập bảng

\(\sqrt{x}-3\)1        -1      2     -2     4       -4       
x16 (TM)4 (KTM)25 (TM)1(TM)49(TM)vô lý

Vậy x={1;16;25;49}
 


 

Bình luận (0)
LS
Xem chi tiết
LS
Xem chi tiết
H24
Xem chi tiết
AH
15 tháng 5 2021 lúc 21:44

Lời giải:

$m=k.\frac{30}{100}=\frac{3}{10}k$

$\Rightarrow 10m=3k$

$\Rightarrow 10m-3k=0$

Đáp án C.

Bình luận (1)
H24
15 tháng 5 2021 lúc 21:45

C

Bình luận (0)
H24
15 tháng 5 2021 lúc 21:45

`m=30%k=3/10k`

`=>10m=3k`

`=>e` đúng

Bình luận (4)
LS
Xem chi tiết
DC
30 tháng 7 2018 lúc 12:37

=\(\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\):\(\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=\(\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right)\):\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)=\(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\).\(\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=\(\frac{-3}{\sqrt{x}+3}\)

Bình luận (0)
LS
30 tháng 7 2018 lúc 12:39

câu b c thì sao ạ

Bình luận (0)
DC
30 tháng 7 2018 lúc 12:49

b)Vì P<\(\frac{-1}{3}\)\(\Rightarrow\frac{-3}{\sqrt{x}+3}\)+\(\frac{1}{3}\)<0

\(\Leftrightarrow\frac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}\)<0 \(\Leftrightarrow\frac{\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)<0

Vì \(\sqrt{x}+3\)>0 \(\Rightarrow3\left(\sqrt{x}+3\right)\)>0

mà \(\frac{\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)<0 nên \(\sqrt{x}-6< 0\)\(\Leftrightarrow\sqrt{x}< 6\)\(\Leftrightarrow x< 36\)

Kết hợp vs đk: Để P<\(\frac{-1}{3}\)thì\(0\le\) x<36 và x\(\ne9\)

Bình luận (0)
LS
Xem chi tiết