Những câu hỏi liên quan
AN
Xem chi tiết
TN
24 tháng 10 2016 lúc 21:20

 a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

Bình luận (0)
NS
24 tháng 10 2016 lúc 21:33

 a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

Bình luận (0)
NS
Xem chi tiết
PA
29 tháng 1 2017 lúc 10:08

98

nhớ bấm đúng cho mình nhé!

Bình luận (0)
NS
29 tháng 1 2017 lúc 10:17

xin lỗi bạn có thể trình bày cách làm đc ko /

Bình luận (0)
PH
29 tháng 1 2017 lúc 20:47

ta có a+b+c=0

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)

\(ab+ac+bc=-7\)

\(\left(ab+ac+bc\right)^2=49\)

\(a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=49\)

\(a^2b^2+a^2c^2+b^2c^2=49\left(a+b+c=0\right)\)

\(\left(a^2+b^2+c^2\right)^2=14^2\)

\(a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=196\)

\(a^4+b^4+c^4=196-98=98\)

Bình luận (0)
MT
Xem chi tiết
FF
1 tháng 8 2016 lúc 17:12

a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

Bình luận (0)
NC
1 tháng 8 2016 lúc 17:13

a+b+c=0 nha bạn!

Bình luận (0)
MP
4 tháng 7 2017 lúc 13:33

a+b+c=0

k mk nhe !

Bình luận (0)
VK
Xem chi tiết
DT
4 tháng 7 2016 lúc 22:26

Ta có 

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0^2\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Mà \(a^2+b^2+c^2=14\)

\(\Rightarrow14+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-14\Rightarrow ab+bc+ca=-7\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-7\right)^2\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

Mà \(a+b+c=0\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)(1)

Ta lại có 

\(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(14\right)^2\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)

\(\Rightarrow a^4+b^4+c^4=196-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(2)

Thay (1) vào (2) 

\(a^4+b^4+c^4=196-2.49=98\)

nha - Cảm ơn 

CHÚC BẠN HỌC TỐT

Bình luận (0)
DP
Xem chi tiết
LL
Xem chi tiết
NT
5 tháng 10 2018 lúc 11:42

Vào câu hỏi tương tự đi

Bình luận (0)
LL
5 tháng 10 2018 lúc 11:44

Ta có: a + b + c = 0

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2(ab + bc + ac) = 0

=> 14 + 2(ab + bc + ac) = 0

=> 2ab + 2bc + 2ac = -14

=> (2ab + 2bc + 2ac)2 = 196

=> 4a2b2 + 4a2c2 + 4b2c2 + 8ab2c + 8a2bc + 8abc2 = 196

=> 4(a2b2 + b2c2 + c2a2) + 8abc(b + a + c) = 196

=> 4(a2b2 + b2c2 + c2a2) = 196

=> 2(a2b2 + b2c2 + c2a2) = 98

Có: a2 + b2 + c2 = 14

=> (a2 + b2 + c2)2 = 196

=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 196

Mà 2(a2b2 + b2c2 + a2c2) = 98

=> a4 + b4 + c4 = 98

Vậy a4 + b4 + c4 = 98

Bình luận (0)
H24
Xem chi tiết
HM
Xem chi tiết
TN
Xem chi tiết