Tìm y biết:
(Y-1/2):(1/2+1/6+1/12+1/20+...+1/90)=1/3
Tìm y biết: (y- \(\dfrac{1}{2}\)): (\(\dfrac{1}{2}\)+ \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+ ... + \(\dfrac{1}{90}\)) = \(\dfrac{1}{3}\)
(y - \(\dfrac{1}{2}\)) : \(\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\right)\)= \(\dfrac{1}{3}\)
(y\(-\dfrac{1}{2}\)): \(\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)= \(\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right):\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{10}\right)=\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right):\dfrac{3}{10}=\dfrac{1}{3}\)
\(\left(y-\dfrac{1}{2}\right)=\dfrac{1}{10}\)
y = \(\dfrac{3}{5}\)
Tìm Y, biết \(\left(y-\frac{1}{2}\right)\div\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{90}\right)=\frac{1}{3}\)
\(\left(y-\frac{1}{2}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{3}\right):\left(1-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right):\frac{9}{10}=\frac{1}{3}\)
\(\Leftrightarrow\left(y-\frac{1}{2}\right)=\frac{3}{10}\)
\(\Leftrightarrow y=\frac{4}{5}\)
Tìm y:\(\left[y-\frac{1}{2}\right]x\left[\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right]=\frac{1}{3}\)
Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{90}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}\)
\(A=\frac{9}{10}\)
\(=>\left[y-\frac{1}{2}\right]x\frac{9}{10}=\frac{1}{3}\)
\(y-\frac{1}{2}=\frac{1}{3}:\frac{9}{10}\)
\(y-\frac{1}{2}=\frac{10}{27}\)
\(=>y=\frac{10}{27}+\frac{1}{2}\)
\(y=\frac{20+27}{54}=\frac{47}{54}\)
Vậy \(y=\frac{47}{54}\)
Ủng hộ mk nha!!!
tìm y biết:
y + 2 × y + 3 × y + 4 × y + ... + 10 × y = 49,5
Tính nhanh :
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
Tìm y biết:
( y-\(\frac{1}{2}\)) :(\(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+ ... +...+\(\frac{1}{90}\)) =\(\frac{1}{3}\)
\(\left(y-\frac{1}{2}\right):\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)
=> \(\left(y-\frac{1}{2}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
=> \(\left(y-\frac{1}{2}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
=> \(\left(y-\frac{1}{2}\right):\left(1-\frac{1}{10}\right)=\frac{1}{3}\)
=> \(\left(y-\frac{1}{2}\right):\frac{9}{10}=\frac{1}{3}\)
=> \(y-\frac{1}{2}=\frac{3}{10}\)
=> \(y=\frac{13}{10}\)
Study well ! >_<
Tìm x,y biết:
a) 1/5.8+1/8.11+1/11.14+...+1/y(y+3).=98/1545
b) 2x+7/6+13/12+21/20+31/30+43/42+57/56+73/72+91/90 = 0
Bài 1:tính
a, A = 25/6+25/6.11+25/11.16+...+25/41.46
b, B= 1/10+1/15+1/21+...+1/120
Bài 2: Chứng minh rằng:
1/2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
bài 3: tìm y
(y - 1/2).(1/2+1/6+1/12+1/20+.....+1/90) = 1/3
b1/A=25/1.6+25/6.11+25/11.16+....+25/41.46
=5.(5/1.6+5/6.11+5/11.16+...+5/41.46)
=5.(1/1-1/6+1/6-1/11+1/11-1/16+....+1/41-1/46)
=5.(1/1-1/46)
=5.45/46
=225/46
1/5.8+1/8.11+....+1/y(y+3)=98/1545 tìm x,y
2x+7/6+13/12+21/20+31/30+43/42+57/56+73/72+91/90=10
1/2013.x+1+1/2+1/6+....+1/2012.2013=2
1+1/3+1/6+1/10+...+1/2012.2013=2
1/21+1/28+1/36+...+2/x(x+1)=2/9
ai nhanh mình tik cho
Tìm y biết:
Câu 14: \(1\frac{1}{2}+2\frac{1}{6}+3\frac{1}{12}+4\frac{1}{20}-y=\frac{4}{5}\)
\(\frac{3}{2}+\frac{13}{6}+\frac{37}{12}+\frac{81}{20}-y=\frac{4}{5}\)
\(\frac{54}{5}-y=\frac{4}{5}\)
y=10