Tìm x\(\in Z\)thỏa \(\frac{x^2+2x}{x+1}\)
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
1 tìm x,y\(\in\)Z thỏa mãn x+y=xy=2
2 tìm GTLN của Q=\(\frac{27-2x}{12-x}\)(x\(\in\)Z)
3 tìm p nguyên tố sao cho p+1,p+5 cùng là số nguyên tố
tìm x,y,z thỏa mãn \(\frac{2x^2}{x^2+1}=y;\frac{2y^2}{y^2+1}=z;\frac{2z^2}{z^2+1}=x\)
Tìm x,y,z thỏa mãn các điều kiện sau
\(\hept{\begin{cases}\frac{2x^2}{x^2+1}=y\\\frac{2y^2}{y^2+1}=z\\\frac{2z^2}{z^2+1}=x\end{cases}}\)
1, Cho x,y: x+y=1 và x>0. Tìm Max A = x2y3
2, Cho x,y,z >0 thỏa mãn : xy+yz+zx=1. Tìm Max \(A=\frac{2x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2)
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv
cho x,y,z thỏa mãn \(x,y,z\in\left[\frac{1}{2};1\right]\) . Tìm min max của
\(A=\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\)
Dự đoán \(MinA=2\)khi \(x=y=z=\frac{1}{2}\)và \(MaxA=3\)khi x = y = z = 1. Ta sẽ chứng minh \(2\le\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\le3\)
Đặt \(a=x+1;b=y+1;c=z+1\), khi đó ta được\(a,b,c\in\left[\frac{3}{2};2\right]\)
Bất đẳng thức cần chứng minh được viết lại là \(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)
#Trước hết ta chứng minh\(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\)\(\Leftrightarrow5\le\frac{a+b-2}{c}+1+\frac{b+c-2}{a}+1+\frac{c+a-2}{b}+1\)\(\Leftrightarrow5\le\left(a+b+c-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo một đánh giá quen thuộc thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)nên ta quy bất đẳng thức cần chứng minh về dạng \(\left(a+b+c-2\right)\frac{9}{a+b+c}\ge5\)
Đặt \(a+b+c=s\)thì ta cần chứng minh \(\frac{9\left(s-2\right)}{s}\ge5\Leftrightarrow s\ge\frac{9}{2}\)*đúng vì \(a+b+c\ge\frac{3}{2}.3=\frac{9}{2}\)*
Vậy bất đẳng thức bên trái được chứng minh
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)
#Chứng minh \(\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)
Không mất tính tổng quát, ta giả sử \(\frac{3}{2}\le a\le b\le c\le2\). Khi đó ta sẽ có\(\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{2}+\frac{2}{a}\right)=\frac{\left(2-b\right)\left(a^2-2b\right)}{2ab}\le0\)hay \(\frac{a}{b}+\frac{b}{a}\le\frac{a}{2}+\frac{2}{a}\)
Hoàn toàn tương tự ta được \(\frac{b}{c}+\frac{c}{b}\le\frac{b}{2}+\frac{2}{b}\); \(\frac{a}{c}+\frac{c}{a}\le\frac{a}{2}+\frac{2}{a}\)
Cộng theo vế các bất đẳng thức trên ta được\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\)
Ta cần chứng minh\(a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\le3+\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\Leftrightarrow a+\frac{2}{a}+\frac{b}{2}\le3+\frac{2}{c}\)
Bất đẳng thức cuối cùng là một bất đẳng thức đúng vì\(\hept{\begin{cases}a+\frac{2}{a}-3=\frac{\left(a-1\right)\left(a-2\right)}{a}\le0\Leftrightarrow a+\frac{2}{a}\le3\\\frac{b}{2}\le1\le\frac{2}{c}\end{cases}}\)
Vậy bất đẳng thức bên phải được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Dòng cuối là x = y = z = 1 nha
Tìm \(x\in Z\)để:
A = \(\frac{2x}{x-2}\in Z\)
B = \(\frac{x}{3x+1}\in Z\)
C = \(\frac{x^2+2}{x+1}\in Z\)
D = \(\frac{x+1}{x^2+3}\in Z\)
a) ta có: \(A=\frac{2x}{x-2}=\frac{2x-4+4}{x-2}=\frac{2.\left(x-2\right)+4}{x-2}=\frac{2.\left(x-2\right)}{x-2}+\frac{4}{x-2}=2+\frac{4}{x-2}\)
Để \(A\inℤ\)
\(\Rightarrow\frac{4}{x-2}\inℤ\)
\(\Rightarrow4⋮x-2\Rightarrow x-2\inƯ_{\left(4\right)}=\left(4;-4;2;-2;1;-1\right)\)
nếu x -2 = 4 => x = 6 (TM)
x- 2= - 4 => x= - 2 (TM)
x- 2= 2 => x = 4 (TM)
x- 2 = -2 => x = 0 (TM)
x - 2 = 1 => x = 3 (TM)
x - 2 = -1 => x= 1 (TM)
KL: \(x\in\left(6;-2;4;0;3;1\right)\)
c) ta có: \(C=\frac{x^2+2}{x+1}=\frac{\left(x+1\right).\left(x-1\right)+3}{x+1}=\frac{\left(x+1\right).\left(x-1\right)}{x+1}+\frac{3}{x+1}\)\(=x-1+\frac{3}{x+1}\)
Để \(C\inℤ\)
\(\Rightarrow\frac{3}{x+1}\inℤ\)
\(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu x + 1 = 3 => x = 2 (TM)
x + 1 = - 3 => x = -4 (TM)
x + 1 = 1 => x = 0
x + 1 = -1 => x = -2 (TM)
KL: \(x\in\left(2;-4;0;-2\right)\)
p/s
cho các số x,y,z dương thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\) tìm GTNN
P=\(\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
Dự đoán khi \(x=y=z=\sqrt{3}\) vậy dc GTNN là \(\frac{3\sqrt{3}}{2}\), cần c/m: \(P\ge\frac{3\sqrt{3}}{2}\)
\(\LeftrightarrowΣ\frac{y^2z^2}{x\left(y^2+z^2\right)}\ge\frac{3}{2}\sqrt{\frac{3}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}}\)
\(\LeftrightarrowΣ\frac{y^3z^3}{y^2+z^2}\ge\frac{3}{2}\sqrt{\frac{3x^4y^4z^4}{x^2y^2+x^2z^2+y^2z^2}}\).Đặt \(\hept{\begin{cases}yz=a\\xz=b\\xy=c\end{cases}}\)
Khi đó ta cần chứng minh \(Σ\frac{a^3}{\frac{ac}{b}+\frac{ab}{c}}\ge\frac{3}{2}\sqrt{\frac{3a^2b^2c^2}{a^2+b^2+c^2}}\)
\(\LeftrightarrowΣ\frac{a^2}{b^2+c^2}\ge\frac{3}{2}\sqrt{\frac{3}{a^2+b^2+c^2}}\) và từ BĐT thuần nhất cuối , ta có thế khẳng định rằng \(a^2+b^2+c^2=3\)
Có nghĩa là ta cần c/m \(Σ\frac{a}{3-a^2}\ge\frac{3}{2}\LeftrightarrowΣ\left(\frac{a}{3-a^2}-\frac{1}{2}\right)\ge0\)
\(\LeftrightarrowΣ\frac{\left(a-1\right)\left(a+3\right)}{3-a^2}\ge0\)\(\LeftrightarrowΣ\left(\frac{\left(a-1\right)\left(a+3\right)}{3-a^2}-\left(a^2-1\right)\right)\ge0\)
\(\LeftrightarrowΣ\frac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}\ge0\) . XOng!
cho 3 số thực x,y z thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\) . Tìm giá trị nhỏ nhất của \(P=\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{z\left(x^2+y^2\right)}\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Ta có \(a,b,c>0;a^2+b^2+c^2=1\)
và \(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)
Áp dụng bất đẳng thức Cô-si cho 3 số dương ta có
\(a^2\left(1-a^2\right)^2=\frac{1}{2}.2a^2.\left(1-a^2\right)\left(1-a^2\right)\)
\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\Rightarrow\frac{a^2}{a\left(1-a^2\right)}\ge\frac{3\sqrt{3}}{2}a^2\)(1)
Tương tự \(\frac{b^2}{b\left(1-b^2\right)}\ge\frac{3\sqrt{3}}{2}b^2\)(2)
\(\frac{c^2}{c\left(1-c^2\right)}\ge\frac{3\sqrt{3}}{2}c^2\)(3)
từ (1),(2) và (3) ta có \(P\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)
Vậy Min của \(P=\frac{3\sqrt{3}}{2}\)Khi x=y=z\(=\sqrt{3}\)