Những câu hỏi liên quan
DT
Xem chi tiết
NM
Xem chi tiết
NM
9 tháng 1 2016 lúc 16:52

Sửa 1 chút. A=2-3-4+5+6-7-...+97+98-99-100

Giải đầy đủ giúp mk, thanks

Bình luận (0)
PQ
9 tháng 1 2016 lúc 17:02

A = (2-3-4+5)+ (6-7-8+9)+... + (87-88-89+100)

A =       0      +        0      + ... +              0

=> A = 0

Bình luận (0)
NN
Xem chi tiết
LT
9 tháng 8 2017 lúc 21:00

a) 

S = 4 + 42 + 43 + ... + 499 + 4100

S = ( 4 + 42 ) + ( 4+ 44 ) + ... + ( 499 + 4100 )

S = 4( 1 + 4) + 43.( 1 + 4) + ... + 499( 1 + 4)

S = 4.5 + 43.5 + .. + 499.5

S = ( 4 + 43 + .. +499).5 => S \(⋮\)5

b) S = 2 + 22 + 23 + ... + 22009  + 22010

=> S \(⋮\)2

S = = 2 + 22 + 23 + ... + 22009 + 22010

S = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

S = 2( 1 + 2 ) + 23( 1 + 2 ) + ... +22009( 1 + 2 )

S = 2.3 + 23.3 +... +22009.3

S = ( 2 + ... +22009 ) x 3

=> s\(⋮\) 3

=> S chia he^'t cho 2 va` 3 ne^n S \(⋮\) 6

Bình luận (0)
BC
Xem chi tiết
NA
25 tháng 8 2018 lúc 12:56

1-2+3-4+5-6+.....+99-100+101. 
Ta viết lại tổng như sau: 
101 - 100 + 99 - 98 + ... + 5 - 4 + 3 - 2 + 1 
1 + 1 + ... + 1 + 1 + 1 
Số phép trừ trong dãy tính là: 
( 101 - 1 ) : 2 = 50 ( phép trừ ) 
Kết quả dãy số là: 
1 x 50 + 1 = 51 
Vậy: 1-2+3-4+5-6+.....+99-100+101. 
= 51

Bình luận (0)
BC
Xem chi tiết
LM
24 tháng 8 2018 lúc 21:51

  1-2+3-4+5-6+...+99-100+101 
= (1+3+5+...+101) - (2+4+6+...+100) 
tu 1 den 101 co : (101-1):2+1=51 
1+..+101 = (1+101)x 51:2= 2601 
tu 2 den 100 co : (100-2);2+1=50 
2+...+100 = (100 +2) x 50:2=2550 
=> A= 2601-2550=51

học tốt

Bình luận (0)
LM
24 tháng 8 2018 lúc 21:53

tích nha,mơn nhìu

Bình luận (0)
LM
24 tháng 8 2018 lúc 21:56

thanks nhìu

Bình luận (0)
HT
Xem chi tiết
UN
Xem chi tiết
HM
2 tháng 6 2018 lúc 8:21

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)

b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)

c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)

\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)

Bình luận (0)
DL
2 tháng 6 2018 lúc 8:36

a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)

\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)

\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)

\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)

Vậy \(A:B=1.\)

c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

Bình luận (0)
HD
Xem chi tiết
LP
11 tháng 5 2018 lúc 15:28

Đặt   \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt    \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)

\(2B=3-\frac{1}{3^{99}}\)

\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)

Thay B vào 4A ta có:

\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)

\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)

Vì \(\frac{3}{8}>\frac{3}{16}\)

\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)

Vậy \(A< \frac{3}{16}\)

Bình luận (0)
TD
Xem chi tiết