Cho a là số nguyên tố lớn hơn 3. CMR: a2 - 1 chia hết cho 24
Câu 1 : Cho p là số nguyên tố lớn hơn 3 . CMR (p-1)(p+1) chia hết cho 24
Câu 2 CMR nếu p và p+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng luôn chia hết cho ...
Câu 3 : Cho p là số nguyên tố lớn hơn 3 . Hỏi p2 + 2009 là hợp số hay số nguyên tố .
a) Cho a là số nguyên tố lớn hơn 6. CMR: \(a^2-1\)chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\)chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\)chia hết cho 240
cho p là số nguyên tố lớn hơn 3. CMR p^2-1 chia hết cho 24
cho p là số nguyên tố lớn hơn 3. CMR p^2-1 chia hết cho 24
Cho p là số nguyên tố lớn hơn 3. CMR : p^2 - 1 chia hết cho 24
a) Cho p là số nguyên tố lớn hơn 3, cmr: (p-1)(p+1) chia hết cho 24
b) CMR: 2n+1 và 3n+1 nguyên tố cùng nhau. Biết n là số tự nhiên
a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ.
\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)
(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))
\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).
Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).
Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).
b) Đặt \(\left(2n+1,3n+1\right)=d\).
Suy ra
\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Cho a,b là số nguyên tố lớn hơn 3
CMR a, a^2-1 chia hết cho 24
b, a^2+b^2 chia hết cho 24
a, Vì a là số nguyên tố lớn hơn 3 nên a có dạng 3k+1 hoặc 3k+2(k thuộc N*)
Xét a=3k+1=> a2-1=(a-1)(a+1)=3k(3k+2)\(⋮\)3
Vì k thuộc N* mà 3k,3k+2 là 2 số cùng tính chẵn lẻ liên tiếp nên 3k(3k+2) chia hết cho 8
mà (8,3)=1=> a2-1\(⋮\)24
ghi chú
câu b là a^2-b^2 mới ra chứ
hok tốt
chứng tỏ nếu a nguyên tố lớn hơn 3 thì a2 - 1 chia hết cho 24
CMR p là số nguyên tố lớn hơn 3 thì [p-1].[p+1] chia hết cho 24