PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ DẠNG hệ số bất định
(x2−x+2)2+(x−2)2
1) Phân tích đa thức thành nhân tử ( = cách nhẩm nghiệm và hệ số bất định)
a) x^4+6x^3+11x^2+6x+1
b)x^4+7x^3+14x^2+14x+4
c)x^4-1ox^3-15x^2+20x+4
2)phân tích đa thức thành nhân tử( = cách hệ số bất định)
a) x^4-8x^3+11x^2+8x+12
b) x^4+x^2+1
c)x^4+4
phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
x^4-8x^2-x+12
phân tích đa thức thành nhân tử ( dùng phương pháp hệ số bất định ) 2x^2 + 2y^2 + 5xy + x - y - 1
phương pháp hệ số bất định rắc rôi chết
phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định:
a)(x^2+4x+8)^2+3x^2+14x^2+24x
b)x^2+3x+2
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
x2-6x+5
Ta có : x2 - 6x + 5
= x2 - x - 5x + 5
= (x2 - x) - (5x - 5)
= x(x - 1) - 5(x - 1)
= (x - 5)(x - 1)
Tao có \(x^2-6x+5\)
=\(x^2-x-5x+5\)
=\(\left(x^2-x\right)-\left(5x-5\right)\)
=\(x\left(x-1\right)-5\left(x-1\right)\)
=\(\left(x-5\right)\left(x-1\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định :
\(x^4-x^3-10x^2+2x+4\)
Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)
Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)
Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)
Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)
Giả sử:
\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)
Ta có:
\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)
\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)
dăm ba mấy câu này ko làm đc thì làm chó
Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định :
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hệ số bất định với các hê số nguyên x mũ 4 - 5xmũ 3 + 7x mũ 2 - 6
Đặt H \(=x^4-5x^3+7x^2-6\)
Gỉa sử : \(H=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^{3\:}+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
\(\Leftrightarrow\hept{\begin{cases}a+c=-5\\ac+b+d=7\\ad+bc=0\end{cases}}\)
\(\left\{bd=6\right\}\)
\(\Leftrightarrow\hept{\begin{cases}a=-3\\b=3\\c=-2\end{cases}}\)
\(\left\{d=-2\right\}\)
\(\Rightarrow H=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)
Chúc bạn học tốt !!!
Phân tích đa thức thành nhân tử(Phương pháp hệ số bất định):
3x^2+5x-2
3x^2+5x -2
=3x^2 -x +6x -2
=(3x^2 -x) + (6x - 2)
=x (3x -1 )+ 2(3x -1)
=(3x - 1)(x+2)
Chúc bạn học tốt!!!!!!!!!!!!! nha.