1/6 + 1/12 + 1/20 + ..... + 1/90
1/6 + 1/12 + 1/20 + .....+ 1/90
1/6+1/12+1/20+...+1/90
=1/2.3+1/3.4+1/4.5+...+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
=1/2-1/10
=2/5
\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{90}\)
\(\Rightarrow\)\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+......+\frac{1}{9\times10}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow\frac{2}{5}\)
^HT^
1/2 + 1/6 + 1/12 +1/20 + ... +1/90
1/2+1/6+1/12+...+1/90=1/(1.2)+1/(2.3)+1/(3.4)+...+1/(9.10)
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
1/2+1/6+1/12+1/20+...+1/90
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+..+\frac{1}{90}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
dấu "." là nhân nhé
1/2 + 1/6 + 1/12 + 1/20 + ......+ 1/90
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}\)
\(A=\frac{9}{10}\)
1/2+1/6+1/12+1/20+...+1/90
=1/1.2+1/2.3+1/3.4+...+1/9.10
=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10
=9/10
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{9.10}\)
=\(\frac{9}{10}\)
(1/2+1/6+1/12+...+1/72+1/90) : x = 9/20
=> (1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9 + 1/9.10) : x = 9/20
=> (1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9 + 1/9 - 1/10) : x = 9/20
=> (1 - 1/10) : x = 9/20
=> 9/10 : x = 9/20
X = 9/10 : 9/20 = 2
1/6+1/12+1/20+1/30+.....+1/90+1/110
A= 1/6+1/12+1/20+1/30+.....+1/90+1/110
A=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
A=1/2-(1/3-1/3)-(1/4-1/4)-(1/5-1/5)-(1/6-1/6)-(1/7-1/7)-(1/8-1/8)-(1/9-1/9)-(1/10-1/10)-1/11
A=1/2-1/11
A=11/22-2/22
A=9/22
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Tính nhanh
1/6+1/12+1/20+...+1/90+1/110 (dạng đủ)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{90}+\dfrac{1}{110}\)
\(=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...+\dfrac{1}{9x10}+\dfrac{1}{10x11}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{2}-\dfrac{1}{11}=\dfrac{11}{22}-\dfrac{2}{22}=\dfrac{9}{22}\)
1/6+1/12+1/20+1/90+1/110
=1/2x3+1/3x4+1/4x5+...+1/9x10+1/10x11
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-...+1/9-1/10+1/10-1/11
=1/2-1/11=9/22
Tính tổng s= 1/6+ 1/12+ 1/20+ ........+ 1/90
=1/2 + (1/2*3+1/3*4) + (1/4*5+1/5*6) + (1/6*7+1/7*8) + (1/8*9+1/9*10)
=1/2 + 1/2*3.(1+1/2) + 1/2*5.(1/2+1/3) + 1/2*7.(1/3+1/4) + 1/2*9.(1/4+1/5)
=1/2 + 1/2*3.(3/2) + 1/2*5.(5/6) + 1/2*7.(7/12) + 1/2*9.(9/20)
=1/2 + 1/4 + 1/12 + 1/24 + 1/40
=9/10
6 = 2 x 2 + 2 = 2(2+1)
12 = 3 x 3 + 3 = 3(3+1)
20 = 4 x 4 + 4 = 4(4+1)
...
90 = 9 x 9 + 9 = 9(9+1)
Ta có đồng nhất thức sau
1/[n(n+1)] = 1/n - 1/(n+1)
Vậy
1/6 = 1/2 - 1/3
1/12 = 1/3 - 1/4
1/20 = 1/4 - 1/5
....
1/90 = 1/9 - 1/110
S = 1/2 -1/3+1/3-1/4+..............+1/9 -1/10
Tổng là 1/2 + 1/2 - 1/10 = 1 - 1/10 = 9/10
\(S=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(\Rightarrow S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)(áp dụng quy tắc dấu ngoặc )
\(S=\frac{1}{2}-\left(\frac{1}{3}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-...-\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\)
\(S=\frac{1}{2}-\frac{1}{10}\)
\(S=\frac{2}{5}\)
Tính tổng 1/6+ 1/12+ 1/20+ ........+ 1/90
Giải hộ mik nha mấy bạn
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)