\(\frac{x}{3}=\frac{y}{4}\)và x.y=48
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm x,y
\(\frac{x}{3}=\frac{y}{4}\)và x.y = 48
help?
Đặt \(\frac{x}{3}=\frac{y}{4}=t\Rightarrow x=3t,y=4t\)
Ta có: \(xy=48\)
\(\Rightarrow\left(3t\right).\left(4t\right)=48\)
\(\Rightarrow12t^2=48\)
\(\Rightarrow t^2=4\Rightarrow\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Ta có bảng sau:
t | 2 | -2 |
x = 3t | 6 | -6 |
y = 4t | 8 | -8 |
Chúc bạn học tốt.
Ta có x/3 = y/4 và ta lại có x . y = 48
Do đó x . y / 3 . 4 = 48/12 = 4
Nên x = 3 . 4 = 12
y = 4 . 4 = 16
hok tốt nhé
kb lun
Giải : theo tính chất của dãy tỉ số bằng nhau ta có
x/3 = y/4 = x.y / 3.4 = 48 / 12 = 4
Do đó : x/3 = 4 suy ra : x = 3. 4 = 12
y/4 = 4 suy ra : y = 4 . 4 = 16
Vậy x= 12 ; y = 16
\(\frac{x}{3}\)=\(\frac{y}{4}\)và x.y=48
Cho \(\frac{x}{3}=\frac{y}{4}=k\)biết \(xy=48\)
\(\Rightarrow x=3k;y=4k\)
\(\Rightarrow xy=3k.4k\)
\(\Rightarrow48=12k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=-2\)hoặc \(k=2\)
*Trường hợp 1: k=-2
x=3k => x=3.(-2)=-6
y=4k=4.(-2)=-8
*trường hợp 2 : k=2
x=3k=3.2=6
y=4k=4.2=8
Vậy : x=-6;y=-8 hoặc x=6;y=8
Theo tính chất : Với \(\frac{a}{b}=\frac{c}{d}\)thì \(a\cdot d=b\cdot c\),ta có:
x*4=y*3.
=>x=3/4 *y.
Mà x*y=48.
=>x=6;y=8 hoặc x=-6;y=-8
tìm x,y,z biết\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và x.y=48
ta có \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và x.y=48
xét \(\frac{x}{3}=\frac{y}{4}\)
đặt K vào \(\frac{x}{3}=\frac{y}{4}\)
ta có
\(\frac{x}{3}=K\Rightarrow x=3K\)
\(\frac{y}{4}=K\Rightarrow y=4K\)
\(x.y=48\)
\(3K.4K=48\)
\(12K^2=48\)
\(K^2=48:12=4\)
\(K^2=2^2\Rightarrow K=2\)
*\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
*\(\frac{y}{4}=2\Rightarrow y=2.4=8\)
*\(\frac{z}{7}=2\Rightarrow z=2.7=14\)
vậy \(x=6;y=8;z=14\)
dat \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}=k\) => x=3k,y=4k,z=7k
Thay vvao ta dc: x.y=48
3k.4k=48
12.\(k^2\)=48
k^2=4
k=4,-4
TH1: k=a
=> x=3k=>x=12
y va z lam tuong tu nhe
Con TH2 la -4
k cho m nha
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)Và \(x\cdot y=48\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}=K\)
\(\Rightarrow\frac{x}{3}=K\Rightarrow x=3K\)
\(\Rightarrow\frac{y}{4}=K\Rightarrow y=4K\)
\(\Rightarrow\frac{z}{7}=K\Rightarrow z=7K\)
Mà \(x\cdot y=48\)
\(\Rightarrow3K\cdot4k=48\)
\(\Rightarrow12K^2=48\)
\(\Rightarrow K^2=4\)
\(\Rightarrow K=2\)
Khi đó: \(\Rightarrow\frac{x}{3}=2\Rightarrow x=6\)
\(\Rightarrow\frac{y}{4}=2\Rightarrow y=8\)
\(\Rightarrow\frac{z}{7}=2\Rightarrow z=14\)
Vậy x=3;y=8 và z=14
Tìm x, y, z biết: \(\frac{x}{7}=\frac{y^z}{3}\) và \(x.y=48\)
1) tìm hai số x,y,z,t( nếu có) bít rằng:
+) x:y:z:t = 2:3:4:5 và x+y+z+t = - 42
+) \(\frac{x}{4}=\frac{y}{7}\) và x.y=112
+) \(\frac{x}{3}=\frac{y}{4}\) x.y=48
+) \(\frac{x}{2}=\frac{y}{-3}\) và xy = -54
+) \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
+) -0,16 : x = -x : 25
+) Có: \(x:y:z:t=2:3:4:5\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=\left(-3\right)\cdot2=-6\\\frac{y}{3}=-3\Rightarrow y=\left(-3\right)\cdot3=-9\\\frac{z}{4}=-3\Rightarrow z=\left(-3\right)\cdot4=-12\\\frac{t}{5}=-3\Rightarrow t=\left(-3\right)\cdot5=-15\end{matrix}\right.\)
Vậy \(x=-6;y=-9;z=-12;t=-15\)
+) Gọi giá trị chung của tỉ lệ thức là k, ta có:
\(\frac{x}{4}=\frac{y}{7}=k\\ \Rightarrow x=4k;y=7k\)
Lại có: \(x\cdot y=112\)
\(\Rightarrow4k\cdot7k=112\\ 28k^2=112\\ \Rightarrow k^2=4\\ \Rightarrow k=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot\left(\pm2\right)=\pm8\\y=7k=7\cdot\left(\pm2\right)=\pm14\end{matrix}\right.\)
Vậy \(x=\pm8;y=\pm14\)
+) Gọi giá trị chung của tỉ lệ thức là h, ta có:
\(\frac{x}{3}=\frac{y}{4}=h\\ \Rightarrow x=3h;y=4h\)
Lại có: \(x\cdot y=48\)
\(\Rightarrow3h\cdot4h=48\\ 12h^2=48\\ \Rightarrow h^2=4\\ \Rightarrow h=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=3h=3\cdot\left(\pm2\right)=\pm6\\y=4h=4\cdot\left(\pm2\right)=\pm8\end{matrix}\right.\)
Vậy \(x=\pm6;y=\pm8\)
+) Gọi giá trị chung của tỉ lệ thức là g, ta có:
\(\frac{x}{2}=\frac{y}{-3}=g\\ \Rightarrow x=2g;y=-3g\)
Mà \(xy=-54\)
\(\Rightarrow2g\cdot\left(-3g\right)=-54\\ -6g^2=-54\\ g^2=9\\ \Rightarrow g=\pm3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2g=2\cdot\left(\pm3\right)=\pm6\\y=-3g=\left(-3\right)\cdot\left(\pm3\right)=\pm9\end{matrix}\right.\)
Vậy \(x=\pm6;y=\pm9\)
+) \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\\left|y^2-9\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\pm3\end{matrix}\right.\)
Vậy \(x=2;y=\pm3\)
+) \(-0,16:x=-x:25\)
\(-0,16\cdot25=-x\cdot x\\ -x^2=-4\\ \Rightarrow x^2=4\\ \Rightarrow x=\pm2\)
Vậy \(x=\pm2\)
tìm x,y,x biết
a)\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)và 2x-3y+z=6
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x.y+y.z+z.x=64
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
1.Tìm x:
a) \(\frac{2}{x-3}\)= \(\frac{5}{4}\)
b)\(\frac{x+1}{5}=\frac{4x-2}{3}\)
2.Tìm x,y,z
a) \(\frac{x}{2}=\frac{y}{3}\frac{z}{5}\) và \(x-2y+2=10\)
b)\(\frac{x}{2}=\frac{y}{5};\frac{z}{4}=\frac{y}{6}\)và \(x-y+z=20\)
c) \(\frac{x}{y}=\frac{3}{5}\)và \(2x-3y=12\)
d)\(\frac{x}{3}=\frac{y}{4}\)và \(x.y=48\)
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
\(\frac{x}{3}=\frac{y}{4}\)và x.y =20
Tính x,y
Cách 2 ngoài cách bạn dưới
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\left(\frac{x}{3}\right)^2=\frac{x}{3}\cdot\frac{y}{4}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{xy}{12}=\frac{20}{12}\)
\(\frac{x^2}{9}=\frac{15}{9}\)
\(x^2=15\Leftrightarrow x=\sqrt{15}\)
\(\frac{y^2}{16}=\frac{5}{3}\Leftrightarrow\frac{3\cdot y^2}{48}=\frac{80}{48}\)
\(\Leftrightarrow y=\pm\frac{4\sqrt{5}}{\sqrt{3}}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
Suy ra x= 3k ; y = 4k
Mặt khác \(xy=20\Rightarrow3k.4k=20\Rightarrow12k^2=20\Rightarrow k^2=\frac{3}{5}\Rightarrow k=\sqrt{\frac{3}{5}}\)hoặc \(k=-\sqrt{\frac{3}{5}}\)
Với \(k=\sqrt{\frac{3}{5}}\Rightarrow x=3.\sqrt{\frac{3}{5}};y=4.\sqrt{\frac{3}{5}}\)
Với \(k=-\sqrt{\frac{3}{5}}\Rightarrow x=-3.\sqrt{\frac{3}{5}};y=-4\sqrt{\frac{3}{5}}\)
x/3=y/4 <=> 4x=3y <=> 12xy=9y2 ( nhân cả 2 vế với 3y) <=> 9y2=240 <=> y= \(\frac{+-\sqrt{240}}{3}\)<=> x=\(\frac{60}{+-\sqrt{240}}\)
a/ \(\frac{x}{3}\)=\(\frac{y}{4}\)và x.y=48
b/(x -\(\frac{1}{2}\))\(^2\)= \(\frac{4}{25}\)
c/3x=-4y=2z và x-2y+3z=56
Ai làm nhanh nhất mình tick nha
a) theo tinh chat day ti so ta co : x/3=y/8 va x.y= 48 => x.y/3.4 =48/12= a => x/3 =4 =>x=3.4= 12 => y/4 =4 => y = 4.4 = 16
b/ (x—1/2)2=4/25
(x—12)2=22/52
(x—1/2)2=(2/5)2
==> x—1/2=2/5 hoặc x—1/2=—2/5
==> x=2/5+1/2 hoặc x= —2/5+1/2
==> x= 4/10+5/10 hoặc x= —4/10+5/10
==> x= 9/10 hoặc x= 1/10