Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
GL
Xem chi tiết
PG
8 tháng 2 2023 lúc 21:20

Theo đề:  \(2x+y=0\Leftrightarrow y=-2x\)    \(\left(1\right)\)

Ta có:   

\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)

\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)

\(\Leftrightarrow15-5x=2y-8\)

\(\Leftrightarrow15+8=2y+5x\)

\(\Leftrightarrow5x+2y=23\)    \(\left(2\right)\)

Thế (1) vào (2), suy ra:

    \(5x+2.\left(-2x\right)=23\)

\(\Leftrightarrow5x-4x=23\)

\(\Leftrightarrow x=23\)

\(\Rightarrow y=-2.23=-46\)

Bình luận (0)
TP
Xem chi tiết
NV
Xem chi tiết
FF
22 tháng 7 2016 lúc 8:13

b) x/3=y/4; y/5=z/7 va 2x+ 3y- z= 186 
Ta có 
x/3=y/4 <=> x/15=y/20 (1) 
y/5=z/7 <=> y/20=z/28 (2) 
Từ (1) và (2) suy ra 
x/15=y/20=z/28 
<=> 2x/30=3y/60=z/28 = (2x+3y-z)/(30+60-28) = 186/62 = 3 
Vậy: 
x=3.15=45 
y=3.20=60 
z=3.28=84 

Bình luận (0)
NV
Xem chi tiết
NV
21 tháng 7 2016 lúc 10:05

Ko bít làm!

Bình luận (0)
NV
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
NT
4 tháng 8 2018 lúc 14:36

\(\hept{\begin{cases}x+y=4\\\left|x+1\right|+\left|y-2\right|=3\end{cases}}\)

Vì \(\left|x+1\right|\ge0;\left|y-2\right|\ge0\)

=>\(\left|x+1\right|+\left|y-2\right|\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+1+y-2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+y=4\end{cases}}\)

Vậy x=4-y ; y=4-x

Bình luận (0)
NN
4 tháng 8 2018 lúc 14:36

áp dụng BĐT giá trị tuyệt đối ta có:

\(\left|x+1\right|+\left|y-2\right|\ge\left|x+y+1-2\right|=3\)

dấu ''='' xảy ra khi và chỉ khi \(\left(x+1\right)\left(y-2\right)\ge0\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1< 0\\y-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>0\\y>1\end{cases}}\\\hept{\begin{cases}x< -1\\y< 2\end{cases}}\left(loai\right)\end{cases}}\)từ chỗ đó tự làm được rồi chứ? xét 2 trường hợp 2 thừa số cùng âm hoặc cùng dương

Bình luận (0)
NP
Xem chi tiết
MN
18 tháng 3 2017 lúc 21:34

\(M=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)

\(M=\left(x^3-y^3\right)+\left(x^2y-xy^2\right)+\left(x^2-y^2\right)+\left(2x+2y+2\right)+1\)

\(M=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y+1\right)+1\)

\(M=\left(x-y\right)\left(x^2+xy+y^2+xy+x+y\right)+2.0+1\)

\(M=\left(x-y\right)\left[\left(x+y\right)^2+\left(x+y\right)\right]+1\)

\(M=\left(x-y\right)\left(x+y\right)\left(x+y+1\right)+1\)

\(M=\left(x-y\right)\left(x+y\right).0+1\)

\(M=1\)

Ở bài này mk áp dụng hằng đẳng thức (a3-b3)=(a-b)(a2+ab+b2) ,(a2-b2)=(a-b)(a+b);(a2+2ab+b2)=(a+b)2

Bình luận (0)
LH
18 tháng 3 2017 lúc 21:28

MIK nghĩ bạn nên tra ông google nha 

(^-^)@@@@@@

Bình luận (0)
NP
18 tháng 3 2017 lúc 21:29

Ko có đâu!

Bình luận (0)
TP
Xem chi tiết