Những câu hỏi liên quan
MT
Xem chi tiết
FN
18 tháng 7 2018 lúc 16:31

\(3xyz^2+\left(-\frac{4}{8}\right)xyz^5\cdot\frac{1}{3}xyz\)

\(=3xyz^2-\frac{1}{2}xyz\cdot\frac{1}{3}xyz\)

\(=3xyz-\frac{1}{6}x^2y^2z^2\)

\(xyz\left(3-\frac{1}{6}xyz\right)\)

b) \(3xyz^5\cdot\left(-\frac{1}{7}\right)xyz\cdot\frac{-1}{8}xyz^4\)

\(=\left[3\cdot\left(-\frac{1}{7}\right)\cdot\left(-\frac{1}{8}\right)\right]\left(x\cdot x\cdot x\right)\left(y\cdot y\cdot y\right)\left(z^5\cdot z\cdot z^4\right)\)

\(=\frac{3}{56}x^3y^3z^{10}\)

Bình luận (0)
ST
18 tháng 7 2018 lúc 16:35

a, \(3xyz^2+\left(\frac{-4}{8}xyz^5\right)\cdot\frac{1}{3}xyz=3xyz^2+\left[\left(\frac{-4}{8}\right)\cdot\frac{1}{3}\right]xyz^5xyz\)\(=3xyz^2-\frac{1}{2}x^2y^2z^6\)

b, \(3xyz^5\cdot\left(\frac{-1}{7}xyz^2\right)\cdot\frac{-1}{8}xyz^4=\left[3\cdot\left(\frac{-1}{7}\right)\cdot\left(\frac{-1}{8}\right)\right]xyz^5xyz^2xyz^4=\frac{3}{56}x^3y^3z^{11}\)

Bình luận (0)
H24
Xem chi tiết
AH
19 tháng 1 2017 lúc 21:57

Đặt \(\left ( \frac{1}{xy},\frac{1}{yz},\frac{1}{xz} \right )=(a,b,c)\)

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} b+c=\frac{1}{2}\\ c+a=\frac{5}{6}\\ a+b=\frac{2}{3}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2b=\frac{2}{3}+\frac{1}{2}-\frac{5}{6}\\ 2c=\frac{1}{2}+\frac{5}{6}-\frac{2}{3}\\ 2a=\frac{5}{6}+\frac{2}{3}-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b=\frac{1}{6}\\ c=\frac{1}{3}\\ a=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} yz=6\\ xz=3\\ xy=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=2\\ z=3\end{matrix}\right.\)

Bình luận (0)
LF
19 tháng 1 2017 lúc 20:10

\(\left\{\begin{matrix}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{matrix}\right.\).Cộng theo vế ta có:

\(\frac{x+y+y+z+x+z}{xyz}=\frac{1}{2}+\frac{5}{6}+\frac{2}{3}=2\)

\(\Leftrightarrow\frac{2\left(x+y+z\right)}{xyz}=2\Rightarrow2\left(x+y+z\right)=2xyz\)

\(\Leftrightarrow x+y+z=xyz\). Thay vào hệ đầu ta có:

\(\left\{\begin{matrix}\frac{x+y}{x+y+z}=\frac{1}{2}\\\frac{y+z}{x+y+z}=\frac{5}{6}\\\frac{x+z}{x+y+z}=\frac{2}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}2\left(x+y\right)=x+y+z\\6\left(y+z\right)=5\left(x+y+z\right)\\3\left(x+z\right)=2\left(x+y+z\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}2\left(x+y\right)=x+y+z\\\frac{6}{5}\left(y+z\right)=x+y+z\\\frac{3}{2}\left(x+z\right)=x+y+z\end{matrix}\right.\)

\(\Leftrightarrow2x+2y=\frac{6}{5}y+\frac{6}{5}z=\frac{3}{2}x+\frac{3}{2}z=x+y+z\)\(\Leftrightarrow\left\{\begin{matrix}y=2x\\z=3x\end{matrix}\right.\)

Bình luận (0)
LF
19 tháng 1 2017 lúc 20:11

giải tùm lum quá ra cái j ko bt

Bình luận (0)
TN
Xem chi tiết
NH
13 tháng 4 2020 lúc 8:51

D.\(xyz^2\)

Nhớ tick cho mình nha!

Bình luận (0)
NH
Xem chi tiết
TT
4 tháng 2 2017 lúc 8:42

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!

Bình luận (0)
NA
Xem chi tiết
KN
25 tháng 10 2020 lúc 20:51

\(ĐK:x,y,z\ne0\)

Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)

\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0

Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)

Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)

Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).

Bình luận (0)
 Khách vãng lai đã xóa
DT
10 tháng 2 2020 lúc 22:16

Nhìn lozic qué bạn ey!!!

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
TA
Xem chi tiết
H24
12 tháng 8 2020 lúc 12:29

Đây mà là tiếng việt lớp 3 à

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
AB
12 tháng 4 2020 lúc 21:14

Kết quả C. 3xyz2

Bình luận (0)
BB
12 tháng 4 2020 lúc 21:34

C. \(3xyz^2\)

Bình luận (0)
NH
13 tháng 4 2020 lúc 8:48

C.\(3xyz^2\)

Nhớ tick cho mình nha!vui

Bình luận (0)
PT
Xem chi tiết