So sánh bằng cách bình phương hai vế:
\(\sqrt{2012}-\sqrt{2011}\)và \(\sqrt{2011}-\sqrt{2010}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
so sánh \(\sqrt{2012}-\sqrt{2011}\) và \(\sqrt{2011}-\sqrt{2010}\)
\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)
\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)
~~> So sánh mẫu
hãy so sánh (ko dùng máy tính ):\(\sqrt{2012}-\sqrt{2011}\) và \(\sqrt{2011}-\sqrt{2010}\)
\(A=\frac{2011}{\sqrt{2012}}+\frac{2012}{\sqrt{2011}};B=\sqrt{2011}+\sqrt{2012}.\)
So sánh A và B
A) SO SÁNH \(\sqrt{2013}-\sqrt{2010}\) và \(\sqrt{2012}-\sqrt{2011}\)
B) SO SÁNH \(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\)và \(\sqrt{2013}+\sqrt{2012}\)
A) SO SÁNH \(\sqrt{2013}-\sqrt{2010}\) và \(\sqrt{2012}-\sqrt{2011}\)
B) SO SÁNH\(\frac{2013}{\sqrt{2012}}+\frac{2012}{\sqrt{2013}}\)và \(\sqrt{2013}+\sqrt{2012}\)
THANKS
New: So sánh hai tổng A và B nếu:
\(A=\frac{2011}{\sqrt{2012}}+\frac{2012}{\sqrt{2011}}\) và \(B=\sqrt{2011}+\sqrt{2012}\)
A = \(\frac{2012-1}{\sqrt{2012}}+\frac{2011+1}{\sqrt{2011}}=\sqrt{2012}-\frac{1}{\sqrt{2012}}+\sqrt{2011}+\frac{1}{\sqrt{2011}}\)
A = \(\sqrt{2012}+\sqrt{2011}+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)=B+\left(\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)
Mà 2011 < 2012 nên \(\frac{1}{\sqrt{2011}}>\frac{1}{\sqrt{2012}}\Rightarrow\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}>0\)
=> A > B
\(S=\sqrt{1+2010^2+\frac{2010^2}{2011^2}}+\frac{2010}{2011}+\sqrt{1+2011^2+\frac{2011^2}{2012^2}}+\frac{2011}{2012}+\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
SO SÁNH \(\sqrt{2013}-\sqrt{2010}\) và \(\sqrt{2012}-\sqrt{2011}\)
MÌNH ĐANG CẦN GẤP CÁC BẠN GIÚP MÌNH NHA
Tính \(\sqrt[2013]{2012\sqrt[2012]{2011\sqrt[2011]{2010.....\sqrt[1994]{1993\sqrt[1993]{1992}}}}}\)
Ta gán : \(1992\rightarrow D\); \(1992\rightarrow A\)
\(D=D+1:A=D.\sqrt[D]{A}\)
CALC , bấm liên tiếp dấu "=" cho đến khi D = 2013 thì dừng.
Sau đó bấm \(\frac{Ans}{D}\) sẽ ra kết quả cần tính.