10\(^{15}\)+1/10\(^{16}\)+1
10\(^{16}\)+1/10\(^{17}\) +1
so sánh
thk
Bài 13: Dấu <, =, >
10 … 10 + 3
11 + 2…. 2 + 11
9 … 10 + 9
10 … 10 + 0
17 – 4 … 14 - 3
18 – 4 … 12
15 … 15 – 1
17 + 1… 17 + 2
12+ 5 … 16
16 … 19 - 3
15 – 4 … 10 + 1
19 – 3 … 11
10 < 10 + 3
11 + 2=2 + 11
9 < 10 + 9
10 = 10 + 0
17 – 4 > 14 - 3
18 – 4 >12
15 > 15 – 1
17 + 1<17 + 2
12+ 5 > 16
16 =19 - 3
15 – 4 =10 + 1
19 – 3 >11
so sánh
a, A=\(\frac{10^{17}-1}{10^{16}-1}vaB=\frac{10^{16}+2}{10^{15}+2}\)
b,\(C=\frac{2017^{15}+1}{2017^{16}+1}vaO=\frac{2017^{16}-1}{2017^{17}-1}\)
c,\(E=\frac{99^{15}-1}{99^{16}-1}vaF=\frac{99^{16}+2}{99^{17}+2}\)
so sánh A=10^15+1/10^16+1
B=10^16+1/10^17+1
TRƯỚC TIÊN TA SO SÁNH 10 VỚI 10B
10A=10^16+10/10^16+1=1\(\frac{9}{16+1}\)
10B=10^17+10/10+17+1=1\(\frac{9}{17+1}\)
VÌ 9/16+1>9/17+1
=>10A>10B
=>A>B
AI TÍCH MK ;MK TÍCH LẠI
so sánh 10 mủ 15+1/10 mủ 16 +1 và 10 mủ 16+1/10 mủ 17 +1
So sánh
A = 10^15+1/10^16+1 và B = 10^16+1/10^17+1
so sanh
10 ^15+1 phần 10^16+1 va 10^16+1 phan 10^17+1
Đặt \(A=\frac{10^{15}+1}{10^{16}+1}\Rightarrow10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
Đặt \(B=\frac{10^{16}+1}{10^{17}+1}\Rightarrow10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì \(10^{16}+1< 10^{17}+1\Rightarrow\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\)
\(\Rightarrow10A>10B\Rightarrow A>B\)
\(\Rightarrow\frac{10^{15}+1}{10^{16}+1}>\frac{10^{16}+1}{10^{17}+1}\)
sosanh
a=10^15+1/10^16+1
b=10^16+1/10^17+1
B = 10^16+1/10^17+1 < 10^16 + 1 + 9 / 10^17+1+9 = 10^16+10/10^17+10
= 10(10^15+1) / 10(10^16+1)
= 10^15 + 1 / 10^15 + 1 = A
=> A > B
Mình không biết
mình mới lớp 4
đáp số:mình lớp 4
so sanh 10 va 10b
ta co
=>10^16+10/10^16+1=1+\(\frac{9}{16+1}\)
=>10^17+10/10^17+1=1+\(\frac{9}{17+1}\)
vi \(\frac{9}{16+1}\) >1
=>10a >10b
=>a>b
a k mkX mk k liaj
tinh
A=10^15+1/10^16+1
B=10^16+1/10^17+1
SO SANH 10A ;10B\
10A=10^16+10/10^16+1
=1+\(\frac{9}{10^{16}}\) +1
10B =10^17+10/10^17+1
=1+\(\frac{9}{10^{17+1}}\)
=>9/10^16>10^17+1
=>10A>10B
=>A>B
K NHE
So sánh A và B
A= 10^15+1 / 10^16+1
B= 10^16+1 / 10^17+1
Ta có:
10A=1016+10/1016+1=1+(9/1016+1)
10B=1017+10/1017+1=1+(9/1017+1)
Vì 9/1016+1 > 9/1017+1 nên 10A>10B,do đó A>B
Ta có:
10A=10^16+10/10^16+1=1+﴾9/10^16+1﴿
10B=10^17+10/10^17+1=1+﴾9/10^17+1﴿
Vì 9/10^16+1 > 9/10^17+1 nên 10A>10B,do đó A>B
Ta có:
10A= 10^16+10 / 10^16+1
=1+ 9 / 10^16 + 1
10B= 10^17+10 / 10^17+1
=1+ 9 / 10^17 + 1
Vì 9 / 10^16 + 1 > 9 / 10^17 + 1 nên 10A>10B
Do đó A > B
(''/''= phần ''*''= mũ)
so sánh A với B biết
A= 10*15 + 1/10*16+1
B=10*16+1/10*17+1
Ta có :
\(A=\frac{10^{15}+1}{10^{16}+1}=\frac{\left(10^{15}+1\right).10}{\left(10^{16}+1\right).10}=\frac{10^{16}+10}{10^{17}+10}\)
\(\Rightarrow A=\frac{10^{16}+1+9}{10^{17}+1+9}\)
Vì \(\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}\)
Mà \(A=\frac{10^{16}+1+9}{10^{17}+1+9}\)nên \(A>B\)
Vậy \(A>B\)