`lim(50 xx frac{1 - (4/5)^{n}}{1 - 4/5} + 4/5 xx 50 xx frac{1- (4/5)^{n-1}}{1 - 4/5})`
Tìm x:
\(\frac{x}{5}=\frac{1}{2}-\frac{1}{5}\)
\(\frac{1}{3}+\frac{2}{3}xX=\frac{18}{21}\)
\(\frac{3}{4}xX+\frac{x}{6}=\frac{1}{6}\)
\(2xX+3\frac{1}{2}+x=24\frac{1}{4}\)
\(\left(\frac{3}{4}Xx\right):\frac{1}{2}=\frac{4}{5}\)
\(\left(\frac{3}{4}\cdot x\right):\frac{1}{2}=\frac{4}{5}\)
\(\frac{3}{4}\cdot x=\frac{4}{5}\cdot\frac{1}{2}\)
\(\frac{3}{4}\cdot x=\frac{2}{5}\)
\(x=\frac{2}{5}:\frac{3}{4}\)
\(x=\frac{8}{15}\)
(3X x):1/2=4/5
=>3 X x=4/5x1/2
=> 3 X x= 2/5
=> x=2/5:3
=>x=2/15
\(\frac{1}{2}xX-\frac{3}{4}=\frac{5}{6}\)
\(\frac{1}{2}.x-\frac{3}{4}=\frac{5}{6}\)
\(\frac{1}{2}.x=\frac{5}{6}+\frac{3}{4}\)
\(\frac{1}{2}.x=\frac{19}{12}\)
\(x=\frac{19}{12}:\frac{1}{2}\)
\(x=\frac{19}{6}\)
Vậy \(x=\frac{19}{6}\)
\(\frac{1}{2}\)x X = \(\frac{5}{6}\)+ \(\frac{3}{4}\)
\(\frac{1}{2}\)x X = \(\frac{19}{12}\)
X = \(\frac{19}{12}\): \(\frac{1}{2}\)
X = \(\frac{19}{6}\)
1/2 x X - 3/4 = 5/6
1/2 x X = 5/6 + 3/4
1/2 x X = 19/12
X = 19/12 : 1/2
X = 19/6
Tìm X
\(\frac{1}{4}x\frac{1}{5}xX=\frac{1}{2}\)
1/4 * 1/5 * x = 1/2
1/20 *x = 1/2
x = 1/2 :1/20
x = 1/2 * 20/1
x = 10
\(\frac{1}{4}\times\frac{1}{5}X=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{20}X=\frac{1}{2}\)
\(\Leftrightarrow X=\frac{1}{2}\div\frac{1}{20}\)
\(\Leftrightarrow x=10\)
*Tìm x:
a,\(X+\frac{1}{2}-\frac{3}{4}=\frac{5}{6}\) b,\(Xx\frac{1}{3}:\frac{2}{5}=\frac{4}{3}\)
=> x + 1/2 = 5/6 + 3/4
=> x + 1/2 = 19/12
=> x = 19/12 - 1/2
=> x = 13/12
Vậy x = 13/12
Tk mk nha
a X+1/2-3/4=5/6 suy ra : Mỉnh phải đi ngủ rồi mai mình giải tiếp cho nhé
X+1/2=5/6+3/4
X+1/2=19/12
X=19/12-1/2
X=13/12
Tính các giới hạn sau:
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 5{n^2} - 2}}\);
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}}\);
d) \(\lim \left( {4 - \frac{{{2^{n + 1}}}}{{{3^n}}}} \right)\)
e) \(\lim \frac{{{{4.5}^n} + {2^{n + 2}}}}{{{{6.5}^n}}}\)
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^n}}}\).
a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).
d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).
e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).
Tìm x
a \(\frac{3}{4}+\frac{1}{4}xX=2\)
b X - \(\frac{2}{3}x\frac{9}{4}=2,5-\frac{1}{2}\)
c \(2xX+\frac{1}{3}=\frac{4}{3}\)
d \(X:\frac{2}{3}+0,75=\frac{9}{4}+3\)
e \(\frac{6}{4}:X+\frac{1}{2}=\frac{9}{4}x\frac{2}{3}\)
f \(Xx\frac{3}{5}-\frac{2}{5}=3\frac{3}{4}-1\)
a, 3/4 + 1/4.x=2
1/4.x = 2-3/4
1/4.x =5/4
x = 5/4:1/4
x = 5
b, x-2/3.9/4=2,5-1/2
x-2/3.9/4=2
x-2/3 =2:9/4
x-2/3 =8/9
x = 8/9+2/3
x = 14/9
c, 2.x+1/3=4/3
2.x =4/3-1/3
2.x =1
x =11:2
x = 1/2
Tìm X:
\(\left(\frac{3}{4}xX\right):\frac{1}{2}=\frac{4}{5}\)
GIÚP MÌNH VỚI !!!!!!!!!!!
\(\left(\frac{3}{4}x\right):\frac{1}{2}=\frac{4}{5}\)
=>\(\frac{3}{4}x=\frac{4}{5}.\frac{1}{2}\)
=>\(\frac{3}{4}x=\frac{2}{5}\)
=>\(x=\frac{2}{5}:\frac{3}{4}\)
=>\(x=\frac{8}{15}\)
\(\left(\frac{3}{4}.x\right)=\frac{4}{5}.\frac{1}{2}\)
\(\left(\frac{3}{4}.x\right)=\frac{2}{5}\)
\(\Rightarrow x=\frac{2}{5}:\frac{3}{4}=\frac{8}{15}\)
k nha
\(\left(\frac{3}{4}.x\right):\frac{1}{2}=\frac{4}{5}\)
\(\left(\frac{3}{4}.x\right)=\frac{4}{5}.\frac{1}{2}\)
\(\left(\frac{3}{4}.x\right)=\frac{2}{5}\)
\(x=\frac{2}{5}:\frac{3}{4}\)
\(x=\frac{8}{15}\)
P2= lim\(\frac{\sqrt{n+1}}{\sqrt{n}+1}\)
M1= lim\(\frac{1+2+3+...+n}{^{ }n^2+2}\)
A5= lim\(\frac{\left(4-2n\right)^3\left(7n^2+1\right)^5}{\left(n^4+n^3-1\right)^2\left(4-5^5\right)}\)