Tính giá trị biểu thức
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......1\frac{2}{41.43}\)
Tính giá trị biểu thức
A=\(1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}....-\frac{2}{63.65}\)
\(A=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{63.65}\)
\(A=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{63-65}\right)\)
\(A=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{63}-\frac{1}{65}\right)\)
\(A=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)
\(A=1-\frac{62}{195}\)
\(A=\frac{133}{195}\)
tính giá trị biểu thức
A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.100}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.100}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)
A=1/3-1/5+1/5-1/7+...+1/99-1/101 là 2/99.101 nhé bạn mình làm nhiều rồi có lẽ bạn ghi đề sai
A=98/303
tính giá trị của biểu thức sau:
B= \(\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+....+\frac{2^3}{101.103}\)
Tính giá trị của các biểu thức sau:
\(M=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
Trả lời gấp nhé! Thanks mấy bạn trc nè! ^^
\(M=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1}{5}\)
\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
N=1/2x(1/3-1/5+1/5-1/7+....+1/99-1/101)
N=1/2x(1/3-1/101)
N=1/2x98/101
N=49/101
Tính giá trị của biểu thức
A =\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times....\times\left(\frac{1}{99}+1\right)\)
Chứng tỏ
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}>32\%\)
A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)
=3/2x4/3x...............x100/99
=2-1/99
=197/99
A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)
A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)
A=\(\frac{100}{2}=50\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%
Câu đầu tiên:
\(A=\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{100}{99}=\frac{3\cdot4\cdot5\cdot...\cdot99\cdot100}{3\cdot4\cdot5\cdot...\cdot99\cdot2}=\frac{100}{2}=50\)
Câu thứ 2:
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}\)
Tính giá trị của N
\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
Giải :
\(N=\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
=> \(N=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
=> \(N=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{101}\right)\right)\)
=> \(N=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\right)\)
=> \(N=\frac{98}{303}\)
N=1/2x(1/3-1/5+1/5-1/7+.....+1/99-1/101)
N=1/2x(1/3-1/101)
N=1/2x98/303
N=49/303
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức ta có :
\(\frac{2}{3.5}=\frac{2}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)\)
\(\frac{2}{5.7}=\frac{2}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)\)
........................................
\(\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow\)\(N=1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Leftrightarrow\)\(N=\frac{1}{3}-\frac{1}{101}\)
\(\Rightarrow N=\frac{98}{303}\)
Ai thấy đúng thì ủng hộ nha !!!!
Tinh giá trị của biểu thức:\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{43.45}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{43.45}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{43.45}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{43}-\frac{1}{45}\)
\(=\frac{1}{3}-\frac{1}{45}=\frac{15}{45}-\frac{1}{45}=\frac{14}{45}\)
\(\Rightarrow A=\frac{14}{45}:2=\frac{14}{90}=\frac{7}{45}\)
Vậy \(A=\frac{7}{45}\).
Áp dụng công thức : \(\frac{1}{a}-\frac{1}{a+n}=\frac{n}{a\left(a+n\right)}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{43\cdot45}\)
\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{43}-\frac{1}{45}\right)\)
\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{45}\right)\)
\(A=\frac{1}{2}\cdot\frac{14}{45}=\frac{7}{45}\)
tính giá trị của biểu thức
a) A=\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + ...+\(\frac{1}{99.100}\)
b) B= \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\) + \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\) +...+\(\frac{2}{97.99}\)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=>\(\frac{1}{1}-\frac{1}{100}\)
=>\(\frac{99}{100}\)
B=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\)
=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)
=>\(\frac{1}{1}-\frac{1}{99}\)
=>\(\frac{98}{99}\)
1, Tính giá trị biểu thức
\(A=\frac{5}{1.2}+\frac{5}{2.3}+.......+\frac{5}{99.100}
\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
A = \(\frac{5}{1.2}\) + \(\frac{5}{2.3}\) +........+\(\frac{5}{99.100}\)
A = 5.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +......+\(\frac{1}{99.100}\) )
A = 5. ( \(\frac{1}{1}\) - \(\frac{1}{2}\) +\(\frac{1}{2}-\frac{1}{3}\) +......+\(\frac{1}{99}-\frac{1}{100}\) )
A= 5. (\(1-\frac{1}{100}\))
A= 5.\(\frac{99}{100}\)
A= \(\frac{99}{20}\)
B = \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+............+ \(\frac{1}{9.10}\)
= \(\frac{1}{2}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)- \(\frac{1}{4}\)+ ...................+\(\frac{1}{9}\)- \(\frac{1}{10}\)
= \(\frac{1}{2}\) - \(\frac{1}{10}\)
= \(\frac{2}{5}\)
C = 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 + 2/13.15 = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + 1/13 - 1/15 =
= 1/3 - 1/15 = 5/15 - 1/15 = 4/15