Tính tổng: S
\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+..+\frac{3}{96.101}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính tổng\(S=\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+...+\frac{3}{96.101}\)
\(.S=3.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\right)\)
\(\Rightarrow S=3.\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{5}.\left(\frac{100}{101}\right)\)
\(S=\frac{60}{101}\)
\(\frac{100}{101}\)nha
bạn tự tính
tíc mình nha
S=3/1.6+3/6.11+3/11.16+...+3/96.101
=>S=1/1.6+1/6.11+1/11.16+...+1/96.101
S=1-1/6+1/6-1/11+1/11-1/16+...+1/96-1/101
S=1-1/101
S=100/101
b=\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+..............+\frac{3}{96.101}\)
\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(\Leftrightarrow B=\frac{3}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(\Leftrightarrow B=\frac{3}{5}.\frac{100}{101}\)
\(\Leftrightarrow B=\frac{60}{101}\)
1,B=\(\frac{3}{1.6}+\frac{3}{6.11}+\frac{3}{11.16}+..............+\frac{3}{96.101}\)
tinh \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}\)
\(A=\frac{1}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{96\cdot101}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\cdot\frac{100}{101}\)
\(A=\frac{20}{101}\)
A = 1/5(1-1/6+1/6-1/11+1/11-1/16+.....+1/96-1/101)
= 1/5(1-1/101)=20/101
tinh \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}\)
ta có : 1/1.6+1/6.11+1/11.16+....+1/96.101
= 1/5.5/1.6+ 1/5.5/6.11+1/5.5/11.16+...+1/5.5/96.101
=1/5 . ( 5/1.6+5/6.11+5/11.16+...+5/96.101)
=1/5 . ( 1/1-1/6 +1/6-1/11+1/11-1/16+....+1/96-1/101)
=1/5 . (1/1-1/101)
=1/5 . 100/101
= 20/101
5A=\( 1-{1\over 6}+{1\over 6}-{1\over 11}+...{1\over 96}-{1\over 101}\)
=\(1- {1 \over 101}={100 \over 101}\)
suy ra A =\({20 \over 101}\)
\(A=\frac{1}{5}\cdot\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+\frac{...5}{96\cdot101}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\left(\frac{1}{1}+0+0+0+...+0-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{101}\right)\)
\(A=\frac{1}{5}\cdot\frac{100}{101}\)
\(A=\frac{20}{101}\)
(x+3).(2y-1)=9
S=\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
\(\frac{3}{5}va\frac{3+m}{5+m}\) Hãy so sánh 2 số trên
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\) Tính tổng
Câu 1:
Giả sử \(\frac{3}{5}< \frac{3+m}{5+m}\)
=) \(3.\left(5+m\right)< 5.\left(3+m\right)\)
=) \(15+3m< 15+5m\) ( Đúng vì \(15=15\)và \(3m< 5m\)) =) Điều giả sử đúng
=) \(\frac{3}{5}< \frac{3+m}{5+m}\)
* Từ điều trên ta suy ra : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Và nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Câu 2 :
= \(5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{31}\right)\)= \(5.\frac{30}{31}=\frac{150}{31}\)
=> Với mọi số tự nhiên m ( như m\(\ne\)0 ) thì \(\frac{3}{5}< \frac{3+m}{5+m}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(=5\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{150}{31}\)
TH1: Xét m = 0
\(\Rightarrow\frac{3}{5}=\frac{3+m}{5+m}\)
TH2: Xét m < 0
\(\Rightarrow\frac{3}{5}>\frac{3+m}{5+m}\)
TH3: Xét m > 0
\(\Rightarrow\frac{3}{5}< \frac{3+m}{5+m}\)
b) \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(=\frac{5.5}{1.6}+\frac{5.5}{6.11}+\frac{5.5}{11.16}+\frac{5.5}{16.21}+\frac{5.5}{21.26}+\frac{5.5}{26.31}\)
\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{150}{31}\)
tính giá trị các biểu thức sau bằng cách hợp lý
a, (\(6^3\)+ 3 x \(6^2\)+ \(3^3\)) : 13
b, \(\frac{8\frac{3}{19}\cdot5\frac{1}{4}+3\frac{16}{19}\cdot5\frac{1}{4}}{\left(2\frac{14}{17}-2\frac{1}{34}\right).34}\)
c, \(\frac{3}{1.6}\)+ \(\frac{3}{6.11}\)+\(\frac{3}{11.16}\)+....+\(\frac{3}{96.101}\)
làm câu nào cg đc cần gấp
C = \(\frac{1}{1.6}\)+ \(\frac{1}{6.11}\)+ \(\frac{1}{11.16}\)+ ........+ \(\frac{1}{96.101}\)
Giải dùm mik chút nhoa hôn hôn
\(C=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(C=\frac{1}{5}\left(1-\frac{1}{101}\right)\)
\(C=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)
\(5C=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\)
\(5C=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\)
\(5C=1-\frac{1}{101}\)
\(C=\frac{100}{\frac{101}{5}}\)