1/1x6+1/6x11+...+1/(5n+1)x(5n+6)=n+1/5n+6
chứng minh công thức
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh với n thuộc N có:
1 / 1x6 + 1/ 6x11 + ... + 1/ ( 5n + 1 ) x ( 5n + 6 ) = n + 1 / 5n + 6
CMR:1/1x6+1/6x11+1/11x16+....+1/(5n+1)(5n+6)=n+1/5n+6
Gọi A = 1/1.6 + 1/6.11 +...+ 1/(5n+1)(5n+6)
5A = 5/1.6 + 5/6.11 + ... + 5/(5n+1)(5n+6)
=1 - 1/6 + 1/6 - 1/11 + ... + 1/5n+1 - 1/5n+6
=1 - 1/5n+6 =5n+6/5n+6 - 1/5n+6=5n+5 /5n+6
chứng minh
1/1x6+1/6x11+...+1/(5n+1)(5n-6)=3/11
1/1x2x3+1/2x3x4+...1/18x19x20<1/4
1/1x2x3+1/2x3x4+...1/118x19x20<1/4 <--- cái này đề sai ở 1/118x19x20 phải là 1/18x19x20
Chứng minh 1/1.6+1/6.11+1/11.16+...+1/(5n+1)(5n+6)=n+1/5n+6
CM: \(\dfrac{1}{1.6}\)+ \(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+6}\)
A = \(\dfrac{1}{5}\)(\(\dfrac{5}{1.6}\) + \(\dfrac{5}{6.11}\)+...+ \(\dfrac{5}{\left(5n+1\right).\left(5n+6\right)}\))
A = \(\dfrac{1}{5}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\)+ \(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{5n+1}\) - \(\dfrac{1}{5n+6}\))
A = \(\dfrac{1}{5}\) .( \(\dfrac{1}{1}\) - \(\dfrac{1}{5n+6}\))
A = \(\dfrac{1}{5}\). \(\dfrac{5n+6-1}{5n+6}\)
A = \(\dfrac{1}{5}\). \(\dfrac{5n+5}{5n+6}\)
A = \(\dfrac{1}{5}\) . \(\dfrac{5.\left(n+1\right)}{5n+6}\)
A = \(\dfrac{n+1}{5n+6}\)
⇒\(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\)+ \(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+1}\) (đpcm)
\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\)
\(A=\dfrac{1}{5}\left[1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right]\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(A=\dfrac{1}{5}\left(\dfrac{5n+6-1}{5n+6}\right)=\dfrac{1}{5}\left(\dfrac{5n+5}{5n+6}\right)=\dfrac{1}{5}.5\left(\dfrac{n+1}{5n+6}\right)=\dfrac{n+1}{5n+6}\)
\(\Rightarrow dpcm\)
Chứng minh: 1/1.6+1/6.11+...+1/(5n+1)(5n+6)=n+1/5n+6
Lời giải:
$A=\frac{1}{1.6}+\frac{1}{6.11}+....+\frac{1}{(5n+1)(5n+6)}$
$5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+....+\frac{(5n+6)-(5n+1)}{(5n+1)(5n+6)}$
$5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{5n+1}-\frac{1}{5n+6}$
$=1-\frac{1}{5n+6}=\frac{5n+5}{5n+6}$
$\Rightarrow A=\frac{n+1}{5n+6}$
Chứng minh rằng với mọi n thuộc N ta luôn có:
1/1.6 + 1/6.11 + 1/11.16 + ......+ 1/( 5n + 1) (5n + 6) = n+1/ 5n + 6
Chung minh
1/1.6+1/11.16+............+1/(5n+1).(5n+6)=n+1/5n+6
Dãy số viết theo quy luật mà bạn, nhiều bài thế này rồi, bạn muốn cụ thể thì vào Google mà tìm ...
BT1:Chứng minh rằng với mọi n thuộc N ta luôn có: 1/1.6 + 1/6.11 + 1/11.16 + ... +1/(5n+1)(5n+6) = n+1/5n+6
BT 2 :Tìm x thuộc N biết: x - 20/11.13 - 20/13.15 - 20/15.17 - .... - 20/53.55 = 3/11
BT 3 : Tìm x thuộc N biết: 1/21 + 1/28 + 1/36 + ... + 2/x(x+1) = 2/9
mình trả lời bài 1 thôi nhé :
Gọi biểu thức trên là A.
Theo bài ra ta có:A=1/1.6+1/6.11+1/11.16+...+1/(5n+1)+1/(5n+6)
=1/5(1-1/6+1/6-1/11+1/11-1/16+...+1/5n+1-1/5n+6)
=1/5(1-1/5n+6)
=1/5( 5n+6/5n+6-1/5n+6)
=1/5(5n+6-1/5n+6)
=1/5.5n+5/5n+6
=n+1/5n+6
=ĐIỀU PHẢI CHỨNG MINH
x- 20/11.13 - 20/13.15 - 20/13.15 - 20/15.17 -...- 20/53.55=3/11
x-10.(2/11.13+2/13.15+2/15.17+...+2/53.55=3/11
x-10.(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)=3/11
x-10.(1/11-1/55)=3/11
x-10.4/55=3/11
x-8/11=3/11
x = 3/11+8/11
x=11/11=1
****