3^n+2 +2^n+3 +3^n+1 +2^n+1
CMR chia het cho 12
chứng minh
a ) 5^5 - 5^4 + 5^3 chia het cho 7
b) 3 ^n+2 - 2^n+2 + 3^n - 2^n chia het cho 10
c) 3 ^n+3 + 3^n+1 + 2^+3 + 2^n+2 chia het cho 6
d ) A = 2+2^2+2^3+....+ 2^12 chia het cho 7
g ) B= 2^35 + 2^36 + 2^37 + 2^38 chia het cho 3
k) C = 1 + 3 + 3^2 + ...+ 3^61
chung to C chia het cho 4
chung to C k chia het cho 3
h ) 5^n+2 + 3^n+2 - 3^n - 5^n chia het cho 24
gíúp mk vs ạ
chung minh rang 11^n+2+12^2n+1 chia het cho 133
chung minh rang A=(17^n+1)(17^n+2)chia het cho 3 voi moi n thuoc N
cho (2a+7b) chia het cho 3 ( a b thuoc N). chung to (4a+2b) chia het cho 3
1.chung to
a)(n+2016^2017).n+2017^2016 chia het cho 2
b)(n-5(n)) chia het cho 9 voi S (n) la tong cac chu so cua n
c)5^10-5^8 chia het cho 12
d)3^28-3^27-3^26 chia het cho 45
CMR vs moi n thuoc N
a, n+2.n+7 chia het cho 2
b, 2(n+1).(n+2) chia het cho 2 va 3
c, n(n+1).(2n+1) chia het cho 2 va 3
tim n thuoc Z :
a)n^2+1 chia het cho n+1
b)n^2-3 chia het cho n+2
c)*n+3 chia het cho n^2+2
a. \(\frac{n^2+1}{n+1}\in Z\)
Ta có : \(\frac{n^2+1}{n+1}=\frac{n\left(n+1\right)-n+1}{n+1}=n-1=0\)
\(\Leftrightarrow n=1\)
b. \(\frac{n^2-3}{n+2}\in Z\)
Ta có : \(\frac{n^2-3}{n+2}=\frac{n\left(n+2\right)-2n-3}{n+2}=n-\frac{2n+4-7}{n+2}=n-2-\frac{7}{n+2}\)
Để n^2 - 3 / n + 2 thuộc Z thì 7 / n + 2 thuộc Z, n thuộc Z
=> n + 2 thuộc { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 9 ; - 3 ; - 1 ; 5 }
a ) Để \(n^2+1⋮n+1\)
mà \(n\left(n+1\right)⋮n+1\)
\(\Rightarrow n\left(n+1\right)-n^2-1⋮n+1\)
\(\Rightarrow n^2+n-n^2-1⋮n+1\)
\(\Rightarrow n-1⋮n+1\)
\(\Rightarrow n+1-2⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow2⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
b ) \(n^2-3⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
\(\Rightarrow n\left(n+2\right)-n^2+3⋮n+2\)
\(\Rightarrow n^2+2n-n^2+3⋮n+2\)
\(\Rightarrow2n+3⋮n+2\)
\(\Rightarrow2n+4-1⋮n+2\)
\(\Rightarrow2\left(n+2\right)-1⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-1;-3\right\}\)
c ) \(n+3⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)⋮n^2+2\)
mà \(n^2+2⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)-n^2-2⋮n^2+2\)
\(\Rightarrow n^2+3n-n^2-2⋮n^2+2\)
\(\Rightarrow3n-2⋮n^2+2\)
mà \(3\left(n+3\right)⋮n^2+2\left(n+3⋮n^2+2\right)\)
\(\Rightarrow3\left(n+3\right)-3n+2⋮n^2+2\)
\(\Rightarrow3n+9-3n+2⋮n^2+2\)
\(\Rightarrow11⋮n^2+2\left(n\in Z\right)\)
\(\Rightarrow n^2+2\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow n^2=9\)
\(\Rightarrow\orbr{\begin{cases}n=3\\n=-3\end{cases}}\)
Đối chiều đề bài , ta có \(n=-3\) thỏa mãn .
A=3^n+3+2^n+3+3^n+2+2^n+2
chung to A chia het cho 12
Tim n thuoc N ,biet
a) 8 chia het cho (n-2)
b)(2.n+1) chia het cho (6-n)
c)3.n chia het cho (n-1)
d)(3.n+5) chia het cho (2.n+1)
Cac bn giup minh nhe !!
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
Toi quen mat cach lam roi xin loi nhe
n+9 chia het cho n+2
n-9chia het cho n-2
9n chia het cho n+2
n-1 chia het cho n-3
n+9chia hết cho n+2
=>n+2+7 chia hết cho n+2
ta có : n+2 chia hết cho n+2
ta thấy có 2 số 2 nên ta sẽ bỏ đi 1 số 2 và lấy :
7-2=5
z thì n=5
n-9chia het cho n-2
=>n-11-2 chia hết cho n-2
dấu số 11 đi ta có :
n-2 chia hết cho n-2
vì có 2 số 2 nên ta bỏ bớt 1 số 2 và :
11+2=14
z thì n = 14
n-1 chia het cho n-3
=>n -4-3 chia hết cho 3
dấu số 4 đi ,ta có :
n-3 chia hết cho n - 3
vì có 2 số 3 nên ta bỏ bớt 1 số 3 và :
3+4=7
z thì n = 7
câu còn lại rất dễ nưng đề phòng cậu tích người khác nên cậu chỉ cần tích tớ là tớ giải cho ,yên tâm vì tớ giải hết rồi càn gì ,chỉ còn mỗi một câu thôi
chứng minh hay là sao hả bạn thiếu đề trầm trọng
n + 9 chia hết cho n + 2
n + 2 + 7 chia hết cho n + 2
mà n + 2 chia hết cho n + 2
nên 7 chia hết cho n + 2
=> n = 5