tìm n để các số sau nguyên tố cùng nhau
a, 3n+4 và 5n+1
b, 2n-1 và 9n+4
Tìm điều kiện của n để hai số sau không nguyên tố cùng nhau
a) 2n – 1 và 9n + 4 (n∊N) b) 3n + 1 và 5n + 4 ( n thuộc N)
Tìm stn n để các số sau nguyên tố cùng nhau
a, 4n + 3 và 2n + 3
b, 7n + 13 và 2n + 4
c, 2n + 3 và 4n + 8
d, 9n + 24 và 3n + 4
e, 18n + 3 và 21n + 7
a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:
\(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)
⇒ 4n + 6 - (4n + 3) ⋮ d ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d
⇒ d = 1; 3
Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì
2n + 3 không chia hết cho 3
2n không chia hết cho 3
n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)
Bài 1: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 2: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
Thanks,tui cũng đang mắc ở bài 2
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Tìm số tự nhiên n để các số sau nguyên tố cùng nhau:
a) 4n+ 3 và 2n+ 3.
b) 7n+ 13 và 2n+ 4.
c) 9n+ 24 và 3n+ 4.
d) 18n+ 3 và 21n+ 7.
Tìm n để các số sau là hai số nguyên tố cùng nhau:
a,9n+24 và 3n+4
b, 4n+3 và 2n+3
a)1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
b)Tương tự thôi,Số nguyên tố dễ mà,bạn tự tính nhé
a,Đặt: UC(9n+24,3n+4)=d
=> \(\hept{\begin{cases}9n+24⋮d\\3n+4⋮d\end{cases}\Rightarrow}9n+24-3\left(3n+4\right)⋮d\Leftrightarrow12⋮d\)
=> d=1,2,3,6,12
Xét thấy: 3n+4 không chia hết cho 3 nên => d\(\ne\)3,6,12 => d=1, 2
Để 9n+24 và 3n+4 nguyên tố cùng nhau <=> 9n+24 lẻ <=> 9n lẻ hay n lẻ
Vậy n lẻ thì 2 số nguyên tố cùng nhau
Cách 2:
Xét n chẵn: => cả 2 số đều chẵn => không nguyên tố cùng nhau
Xét n lẻ: có 9n+24=3(3n+8)
Mặt khác 3n+4 không chia hết cho 3 => xét: 3n+8-(3n+4)\(⋮\)d hay 4\(⋮\)d
Mà n lẻ nên 2 số đều lẻ
=> d=1
Vậy n lẻ thì 2 số nguyên tố cùng nhau
b, Đặt: d=UC(4n+3,2n+3)
=> \(\hept{\begin{cases}4n+3⋮d\\2n+3⋮d\end{cases}\Rightarrow}2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\)
Vậy d=1 hoặc 3
Để d=1<=> 4n+3 không chia hết cho 3 <=> n không chia hết cho 3
Vậy với n không chia hết cho 3 thì 2 số nguyên tố cùng nhau
b, n ko chia hết cho3
Tìm số tự nhiên n để:
a) 4n+3 và 2n+3 là các số nguyên tố cùng nhau
b) 9n+24 và 3n+4 là các số nguyên tố cùng nhau
a, gọi ước chung lơn nhất của .... là d
4n+3 chia hết cho d
2n+ 3 chia hết cho d
=> 2(2n+3) chia hết cho d
=> 4n+5 chia hết cho d
=> (4n+5)-(4n+3) chia hết cho d
=> 2 chia hết cho d
=> d= 1,2
mà 2n+3 là số lẻ ( ko chia hết cho 2)
=> d= 1
vây ......
sai đề bạn ơ
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho
Bài 1:
a. Gọi d là ƯCLN(n+2, n+3). Khi đó:
$n+2\vdots d; n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
Hay $1\vdots d$
$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.
Bài 2:
a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đó: $a+b=24x+24y=192$
$\Rightarrow 24(x+y)=192$
$\Rightarrow x+y=8$
Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$
$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$
Bài 2:
b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.
Khi đó:
$ab=6x.6y=216$
$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$
$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$