Những câu hỏi liên quan
HJ
Xem chi tiết
KN
3 tháng 7 2016 lúc 20:39

20 số nguyên liên tiếp có 6 số chia hết cho 3 →→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1 →→ tổng 20 số chính phương liên tiếp chia 3 dư 2

Bấm mình nha...

Bình luận (0)
HJ
3 tháng 7 2016 lúc 20:51

Khải Nhi à, bạn đếm sai rồi, thế còn dãy 20 số từ 0 đến 19 hay các dãy đại loại thế phải có 7 số mới đúng

Bình luận (0)
JT
Xem chi tiết
MN
3 tháng 7 2016 lúc 20:39

Cho tam giác ABC vẽ AH vuông góc BC taih H . Lấy D,E sao cho D ddpos xứng với H,E đối xứng vs H qua AC . Gọi giao điểm của DE vs AB và AC lần lượt là M,N 

a, C/m tam giác AMD=tam giác AMH

b, C/m AD=AE

c, C/m AH là p/giác góc MHN

 Vẽ giúp mk hình vs đc k ạ

Bình luận (0)
JT
3 tháng 7 2016 lúc 20:58

sao lại trả lời lung tung thế

Bình luận (0)
JT
Xem chi tiết
HJ
Xem chi tiết
JT
Xem chi tiết
JT
Xem chi tiết
DL
3 tháng 7 2016 lúc 23:45

Tổng 20 số chính phương liên tiếp có dạng:

\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+19\right)^2.\)

\(A=20n^2+2\cdot\left(1+2+3+...+19\right)n+1^2+2^2+3^3+...+19^2.\)

\(A=20n^2+2\cdot\frac{19\cdot20}{2}n+\frac{19\cdot\left(19+1\right)\left(2\cdot19+1\right)}{6}\)

\(A=20n^2+19\cdot20\cdot n+19\cdot13\cdot10\)

Dễ thấy A chia hết cho 2 nhưng không chia hết cho 4 nên A không phải là số chính phương.

Bình luận (0)
NV
3 tháng 7 2016 lúc 22:47

20 số nguyên liên tiếp có 6 số chia hết cho 3

=> tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1

=>  tổng 20 số chính phương liên tiếp chia 3 dư 2

Bình luận (0)
JT
3 tháng 7 2016 lúc 22:53

dãy từ 0 đến 19 có 7 số chia hết cho 3

Bình luận (0)
NN
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
CH
27 tháng 7 2016 lúc 16:15

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 

Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0

Bình luận (0)
CH
27 tháng 7 2016 lúc 16:16

(2k+1) 2k (2k-1) 
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương

Mình ko chắc đã đúng đâu

Bình luận (0)