Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DD
Xem chi tiết
TY
Xem chi tiết
QM
Xem chi tiết
H24
17 tháng 9 2017 lúc 10:30
Định lý 1Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.[1]

Đề bài minh hoạ:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}.

Chứng minh định lý:

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC} (1)

Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN} (2)

Từ (1) và (2) suy ra {\displaystyle NA=NC}. Định lý được chứng minh.

Định lý 2

Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy.[2]

Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ({\displaystyle MA=MB} và {\displaystyle NA=NC}). Chứng minh {\displaystyle {\overline {MN}}\parallel {\overline {BC}}} và {\displaystyle MN={\frac {1}{2}}BC}.

Chứng minh định lý:

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)

suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}, suy ra {\displaystyle CF=MB} (vì {\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hinh binh hanh, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}. Định lý được chứng minh.

Bình luận (0)
H24
16 tháng 9 2017 lúc 21:33

D/L: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

ta lay vd 1 de bai de chung minh:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh {\displaystyle NA=NC}

ta chung minh dinh ly

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang): {\displaystyle MF=NC} (1)

Xét hai tam giác BMF và MAN, có: {\displaystyle {\widehat {\rm {MBF}}}={\widehat {\rm {AMN}}}} (hai góc đồng vị), {\displaystyle BM=MA} và {\displaystyle {\widehat {\rm {BMF}}}={\widehat {\rm {MAN}}}} (hai góc đồng vị). Suy ra {\displaystyle \triangle BMF=\triangle MAN} (trường hợp góc - cạnh - góc), từ đó suy ra {\displaystyle MF=AN} (2)

Từ (1) và (2) suy ra {\displaystyle NA=NC}. ( dieu phai chung minh )

D/L : Đường trung bình của tam giác thì song song với cạnh thứ ba và dài bằng nửa cạnh ấy

VD : Cho tam giác ABC có M là trung điểm cạnh AB và N là trung điểm cạnh AC ( và ). Chứng minh  và 

chung minh dinh li

Kéo dài đoạn MN về phía N một đoạn NF có độ dài bằng MN. Nhận thấy: {\displaystyle \triangle ANM=\triangle CNF} (trường hợp cạnh - góc - cạnh)

suy ra {\displaystyle {\widehat {\rm {MAN}}}={\widehat {\rm {NCF}}}}. Hai góc này ở vị trí so le trong lại bằng nhau nên {\displaystyle {\overline {CF}}\parallel {\overline {MA}}} hay {\displaystyle {\overline {CF}}\parallel {\overline {BA}}}. Mặt khác vì hai tam giác này bằng nhau nên {\displaystyle CF=MA}, suy ra {\displaystyle CF=MB} (vì {\displaystyle MA=MB}). Tứ giác BMFC có hai cạnh đối BM và FC vừa song song, vừa bằng nhau nên BMFC là hình bình hành, suy ra {\displaystyle {\overline {MF}}\parallel {\overline {BC}}} hay {\displaystyle {\overline {MN}}\parallel {\overline {BC}}}. Mặt khác, {\displaystyle MN=NF={\frac {1}{2}}MF}, mà {\displaystyle MF=BC} (tính chất hình bình hành), nên {\displaystyle MN={\frac {1}{2}}BC}

Bình luận (0)
QM
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
VD
3 tháng 7 2016 lúc 17:49

Định lí Ta- lét

Bình luận (0)
VF
Xem chi tiết
H24
2 tháng 7 2018 lúc 10:04

A B C D

Vẽ đường chéo AC.

Hình thang ABCD có: AB//CD

                               => \(\widehat{BAC}=\widehat{ACD}\)

Xét \(\Delta ABC\)và \(\Delta ACD\)có:

\(AB=CD\)

\(\widehat{BAC}=\widehat{ACD}\)

\(AC\) là cạnh chung

Do đó:  \(\Delta ABC=\Delta ACD\left(c-g-c\right)\)

         \(=>\widehat{DAC}=\widehat{BCA}\)(2 góc tương ứng nằm ở vị trí so le trong)

           \(=>AD//BC\)

Bình luận (0)
LH
6 tháng 8 2018 lúc 8:03

Hình vẽ:

A B C D

Vẽ đường chéo AC

Hình thang ABCD có: AB//CD

                               \(\Rightarrow\widehat{BAC}=\widehat{ACD}\)

Xét \(\Delta ABC\)và \(\Delta ACD\)có:

\(-AB=CD\)

\(-\widehat{BAC}=\widehat{ACD}\)

\(-AC\)là cạnh chung

Do đó: \(\Delta ABC=\Delta ACD\left(c-g-c\right)\)

          \(\Rightarrow\widehat{DAC}=\widehat{BCA}\)(2 góc tương ứng nằm ở vị trí so le trong)

          \(\Rightarrow AD//BC\)

Bình luận (0)
NI
Xem chi tiết
VC
Xem chi tiết
US
1 tháng 8 2017 lúc 20:57

Thế còn hỏi làm chi

Bình luận (0)
DC
13 tháng 1 2018 lúc 12:38

thế bạn tự làm đi hỏi làm gì

Bình luận (0)