Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\)và 2n + 1 ( n \(\in\)N* )
Bài * : Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\) và 2n + 1 (n \(\in\) N*)
Gọi \(d\inƯC\left(\frac{n\left(n+1\right)}{2};2n+1\right)\) (d \(\in\) N*) \(\Rightarrow\) \(\frac{n\left(n+1\right)}{2}\)⋮ d hay n(n + 1) ⋮ d và 2n + 1 ⋮ d.
Suy ra n(2n + 1) - n(n + 1) = 2n2 + n - n2 + n = n2 + (n2 + n - n2 + n) = n2 ⋮ d.
Từ n(n + 1) = n2 + n ⋮ d và n2 ⋮ d \(\Rightarrow\) n ⋮ d.
Ta lại có 2n + 1 ⋮ d , mà n ⋮ d \(\Rightarrow\) 2n ⋮ d , do đó 1 ⋮ d. \(\Rightarrow\) d = 1
Vậy ƯCLN của \(\frac{n\left(n+1\right)}{2}\) và 2n + 1 là 1.
Gọi
d
∈
Ư
C
(
n
(
n
+
1
)
2
;
2
n
+
1
)
(d
∈
N*)
⇒
n
(
n
+
1
)
2
⋮ d hay n(n + 1) ⋮ d và 2n + 1 ⋮ d.
Suy ra n(2n + 1) - n(n + 1) = 2n2 + n - n2 + n = n2 + (n2 + n - n2 + n) = n2 ⋮ d.
Từ n(n + 1) = n2 + n ⋮ d và n2 ⋮ d
⇒
n ⋮ d.
Ta lại có 2n + 1 ⋮ d , mà n ⋮ d
⇒
2n ⋮ d , do đó 1 ⋮ d.
⇒
d = 1
Vậy ƯCLN của
n
(
n
+
1
)
2
và 2n + 1 là 1.
tìm ưcln của \(\frac{n\left(n+1\right)}{2}\)và \(2n+1\)( n thuộc n * )
gọi d \(d\inưc\left(\frac{n\left(n+1\right)}{2},2n+1\right)\)thì \(n\left(n+1\right)⋮d\)và \(2n+1⋮d\)
\(\Rightarrow n\left(2n+1\right)-n\left(n+1\right)⋮d\)tức là \(n^2⋮d\)
từ \(n\left(n+1\right)⋮d\) và \(n^2⋮d\Rightarrow n⋮d\)ta lại có \(n2+1⋮d\), do đó\(1⋮d\)nên \(d=1\)
vậy ƯCLN CỦA\(\frac{n\left(n+1\right)}{2}\)và\(2n+1=1\)
Bài 1 : Cho \(A=\frac{n\left(n+1\right)}{2}\)và \(B=2n+1\left(n\inℕ^∗\right)\). TÌM ƯCLN ( A , B ) ?
Gọi UCLN (A;B) là : d
=> \(A⋮d\)
\(\Rightarrow\frac{n^2}{2}+\frac{n}{2}⋮d\)
\(\Rightarrow\frac{4}{n}\left(\frac{n^2}{2}+\frac{n}{2}\right)⋮d\)
\(\Rightarrow2n+2⋮d\)
\(\Rightarrow2n+2-2n-1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy...............
Tìm ƯCLN của các số sau:
a. 2n - 1 và 9n + 4
b. 4n + 3 và 5n + 1
c. n và n + 2
d. \(\frac{n\left(n+1\right)}{2}\) và 2n + 1
c) Gọi d là ƯCLN(n; n+2)
=> n chia hết cho d
=> n+2 chia hết cho d
<=> n+2 -n chia hết cho d
=> 2 chia hết cho d
=> d=1 hoăc d=2
=> ƯCLN(n;n+2) là 2
Vậy...
Tìm ƯCLN của \(\frac{n\left(n+1\right)}{2}\)với \(2n+1\)
Gọi \(d=ƯCLN\left(\frac{n\left(n+1\right)}{2};2n+1\right)\)
=> \(\frac{n\left(n+1\right)}{2}⋮d\)
\(2n+1⋮d\)
=>\(n\left(n+1\right)⋮d\)
\(2n+1⋮d\)
=> \(n^2+n⋮d\)
\(2n+1⋮d\)
=>\(2.\left(n^2+n\right)⋮d\)
\(n.\left(2n+1\right)⋮d\)
=>\(2n^2+2n⋮d\)
\(2n^2+n⋮d\)
=>\(\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)
=>\(n⋮d\)
=>\(2n⋮d\)
=> \(\left(2n+1\right)-2n⋮d\)
=> \(1⋮d\)
=> d=1
Vậy \(ƯCLN\left(\frac{n\left(n+1\right)}{2};2n+1\right)=1\)
Tìm UCLN của \(\frac{n.\left(n+1\right)}{\left(2\right)}\) và 2n + 2 ( \(n\in\)N* )
Tìm ƯCLN CỦA 2n+1 va 3n+1\(\left(n\in N\right)\)
Ai giải đúng và nhanh mk tick cho 3 cai nha
gọi d là UCLN (2n+1:3n+1)
ta có 2n+1 chia hết cho d suy ra 3.(2n+1) chia hết cho d suy ra 6n+3 chia hết cho d
3n+1 chia hết cho d 2.(3n+1) chia hết cho d 6n+2 chia hết cho d ta lấy 6n-6n là hết;3-2=1
suy ra d=1
UCLN(2n+1;3n+1)=1
giup mình với mình cần gấp ,phải nộp bài cho thầy rùi
Câu1:tìm 2 số có tổng=66,ƯCLN=6,có 1 số chia hết cho 5
Câu2:biết (5n+6,8n+7)không nguyên tố cùng nhau.tìm ƯCLN của hai số
Câu3:tìm ƯCLN :
a,(76,1995)
b,(2n+1,3n+1) n thuộc N
c,(2n+3,n+1)
d,(\(\frac{n\left(n+1\right)}{2};2n+1\)
Câu4:tìm n thuộc N đẻ (7n+13;2n+4)=1
ai làm đúng và nhanh mình cho 5 tích luôn
Bài 1 : Tìm \(n\in N\)
a) \(\frac{4n-1}{3n+2}\in N\) b) \(\frac{5n-7}{2n+1}\in N\)
Bài 2 : Tìm \(n\in N\)
a) \(\left(n+2\right)\cdot\left(2n+5\right)=21\) b) \(\left(2n-3\right)\cdot\left(n-5\right)=22\)
Bài 3 : Tìm \(x.y\in N\)
a) \(\left(2n+1\right)\cdot\left(3y-5\right)=12\) b) \(\left(3x-1\right)\cdot\left(4y+3\right)=14\)
Cách bạn giải ra giúp mình nha !