Những câu hỏi liên quan
TD
Xem chi tiết
HN
30 tháng 7 2016 lúc 16:30

Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)

Suy ra \(P\ge10\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min P = 10 khi x = y = 1/2

Bình luận (0)
VK
20 tháng 7 2017 lúc 9:35

Suy ra P≥10

Dấu "=" xảy ra khi và chỉ khi {

x+y=1
x=y

⇔x=y=12 

Vậy Min P = 10 khi x = y = 1/2

Bình luận (0)
MA
Xem chi tiết
DC
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
LD
25 tháng 3 2021 lúc 21:35

xin nhá xin nhá =))

Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x=y=1/2

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
TD
Xem chi tiết
HL
Xem chi tiết
NM
Xem chi tiết