Chứng minh rằng:
\(\frac{1}{3}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{2}{3}\)
a)Cho C=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{18}+\frac{1}{19}\)
chứng minh rằng C khg phải là số nguyên.
Bn tham khảo nhé:
Câu hỏi của Hoàng Phú - Toán lớp 7 - Học toán với OnlineMath
~ rất vui vì giúp đc bn ~
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}\)
chứng minh S>1/3
mình cần gấp
Ta có:
\(\frac{1}{12}>\frac{1}{20}\)
\(\frac{1}{13}>\frac{1}{20}\)
\(\frac{1}{14}>\frac{1}{20}\)
......
\(\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\)\(>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(=\frac{8}{20}=\frac{2}{5}>\frac{1}{3}\)
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}>\frac{1}{3}\)
1) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh rằng : S > 1
S=3.(\(\frac{1}{10}\)+\(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\))>3.(5.\(\frac{1}{14}\))>3.\(\frac{1}{3}\)=1
Vậy:S>1
Chứng minh rằng \(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}
Ta có : \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
Ta có:
\(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
\(=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Bài toán phụ 1:
Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12x3=1/4 (1)
Bài toán phụ 2:
Ta có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60x3=1/20 (2)
Từ (1) và (2), ta có:
1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/5+1/4+1/20
1/5+1/13+1/14+1/15+1/61+1/62+1/63<4/20+5/20+1/20
1/5+1/13+1/14+1/15+1/61+1/62+1/63<9/20<1/2
=>1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{70}\)
Chứng minh rằng:\(\frac{4}{3}< A< 35\)
a) Cho \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{60}\)
Chứng minh \(\frac{3}{5}< S< \frac{4}{5}\)
b) Chứng minh \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{100}>\frac{7}{10}\)
c) Chứng minh \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không là số tự nhiên d) Chứng minh \(\frac{1}{15}< D< \frac{1}{10}với\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)Bạn tham khảo ở link này nhé :
Câu hỏi của Tăng Minh Châu - Toán lớp 6 | Học trực tuyến
Cho S\(\text{= }\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)Chứng minh rằng : 1< S < 2
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}=\frac{15}{14}>1\left(1\right)\)
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}
Chứng minh rằng: A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có :
A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\) \(\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)
\---------------------------------------------/
11 số 1/22
Từ trên ta có đpcm
Cho \(A=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\). Chứng minh rằng : 1 < A < 2.
giúp mình với
S=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{4}{10}+\frac{4}{10}+\frac{4}{10}+\frac{4}{10}+\frac{4}{10}\)
=\(\frac{4}{10}\cdot5=2=>S<2\)
S=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
=\(\frac{3}{15}\cdot5=1=>S>1\)
Vậy 1<S<2
nhớ k với nhé