Những câu hỏi liên quan
TT
Xem chi tiết
DV
20 tháng 7 2015 lúc 21:10

\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{a}{b}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{a}{b}=1-\frac{1}{100}=\frac{99}{100}\)

Do đó a = 99k và b = 100k (k \(\in\) N*)

Còn chứng minh a chia hết cho 151 thì bạn xem lại đề, còn tùy vào k thì a mới chia hết cho 151.

Bình luận (0)
TT
Xem chi tiết
JN
18 tháng 3 2016 lúc 20:28

MÀY LÀ CHÓ

Bình luận (0)
NN
Xem chi tiết
TD
Xem chi tiết
DM
11 tháng 2 2016 lúc 10:29

ôi zời ghi từng bài thôi @_@

Bình luận (0)
NT
11 tháng 2 2016 lúc 10:31

nhiều quá duyetj đi

Bình luận (0)
TD
11 tháng 2 2016 lúc 10:34

giúp mk vs mọi người

Bình luận (0)
DT
Xem chi tiết
H24
1 tháng 9 2017 lúc 20:32

mk biết làm câu a thôi :(

Bình luận (0)
DT
1 tháng 9 2017 lúc 20:38

mình cũng chỉ làm được câu a thôi. hì hì

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
DH
7 tháng 9 2021 lúc 16:15

\(C=1+3^1+3^2+...+3^{99}\)

\(=\left(1+3^1\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4\left(1+3^2+...+3^{98}\right)\)chia hết cho \(4\).

\(C=1+3^1+3^2+...+3^{99}\)

\(=\left(1+3^1+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(=\left(1+3^1+3^2+3^3\right)+...+3^{96}\left(1+3^1+3^2+3^3\right)\)

\(=40\left(1+3^4+...+3^{96}\right)\)chia hết cho \(40\).

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
TT
23 tháng 3 2016 lúc 19:14

Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối

ta được :

( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )

= 99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ là k1, k2, k3, ..., k49 thì

A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49)  x 2.3.4....97.98

= 99.(k1+k2+...+k49)

=> A chia hết cho 49               (1)

b) 

Cộng 96 p/s theo từng cặp :

a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)

.................................................. ( làm tiếp nhé )

mỏi woa

Bình luận (0)
TB
1 tháng 4 2017 lúc 21:01

Thùy Trang giỏi quá!!!

Bình luận (0)
ES
24 tháng 1 2018 lúc 11:47

coppy sách chứ gì

Bình luận (0)
NT
Xem chi tiết
MC
23 tháng 2 2019 lúc 17:28

Ta thấy 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)

=> A là số dương 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99 

b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)

Ta sẽ có:

B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)

=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)

Bạn CMTT như câu a là cũng ra

Chúc bạn học tốt

Bình luận (0)
NT
25 tháng 2 2019 lúc 22:05

Cảm ơn bạn.Bạn cho mk kb vs bạn nhé.

Bình luận (0)