CMR mn(m^4-n^4) chia hết cho 30
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho m và n là các số nguyên,cmr:
a, n^2.(n-1) chia hết cho 12
b,n^2.(n^4-1) chia hết cho 60
c,mn(m^4-n^4) chia hết cho 30
d,2n(16-n^4) chia hết cho 30
CMR: mn(m4-n4) chia hết cho 30
Cho m,n thuộc Z. Cmr:
1, n2(n2-1) chia hết cho 12
2, n2(n2-1) chia hết cho 60
3, mn(m4-n4) chia hết cho 30
4, n5-n chia hết cho 30
Cho m,n thuộc Z. Cmr:
1, n2(n2-1) chia hết cho 12
2, n2(n2-1) chia hết cho 60
3, mn(m4-n4) chia hết cho 30
4, n5-n chia hết cho 30
CMR : mn(m4 - n4 ) chia hết cho 30
a. m.n(\m4−\n4)m.n(\m4−\n4)
Đặt A=m.n( m4− n4)A=m.n( m4− n4)
A=m.n( m2− n2)( m2+ n2)A=m.n( m2− n2)( m2+ n2)
A=m.n(m−n)(m+n)( m2+\n2)A=m.n(m−n)(m+n)( m2+\n2)
Nếu m hoặc n chia hết cho 2 thì A chia hết cho 2
Giả sử m,n đều không chia hết cho 2
Lúc đó ta có (m-n) hoặc (m+n) chia hết cho 2
=>A chia hết cho 2
Nếu m hoặc n chia hết cho 3 thì A chia hết cho 3
Giả sử m,n đều ko chia hết cho 3
Lúc đó ta có
m2−1 m2−1 chia hết cho 3
n2−1 n2−1 chia hết cho 3
=> m2− n2 m2− n2 chia hết cho 3
=>A chia hết cho 3
Mà (2,3)=1 =>A chia hết cho 2.3=6
Nếu m hoặc n chia hết cho 5 thi A chia hết cho 5
Giả sử m,n không chia hết cho 5
Lúc đó ta có
m4−1 m4−1 chia hết cho 5
n4−1 n4−1 chia hết cho 5
=>A chia hết cho 5
Mà (5,6)=1
=>A chia hết cho 5.6=30
1. n^3 + 11n chia hết cho 6
2. mn ( m^2 - n^2 ) chia hết cho 3
3. n ( n + 1 )( 2n + 1 ) chia hết cho 6
4. n^2 ( n^4 - 1) chia hết cho 60
5. mn ( m^4 - n^4 ) chia hết cho 30
Câu 1:
(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n...
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6.
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm)
Câu 2: Gọi biểu thức trên là a ta có:
A=mn(m²-n²)
= mn(m² - 1 - n² + 1)
= mn [(m-1)(m+1) - (n-1)(n+1)]
= n(m-1)m(m+1) - m(n-1)n(n+1)
{n(m-1)m(m+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
{m(n-1)n(n+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3
=> A chia hết cho 3
Câu 3:
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Vậy n(n+1)(2n+1) chia hết cho 6
Câu 4: Gọi biểu thức trên là B ta có:
* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1)
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5 và n^2(n^2 - 1).5 cũng chia hết cho 5
=> B chia hết cho 5
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3
=> B chia hết cho 3
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1)
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4
=> B chia hết cho 4
Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60
Câu 5: Gọi biểu thức trên là C ta có:
Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2)
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2.
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2.
Vậy C chia hết cho 2
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3.
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3.
Vậy C chia hết cho 3.
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5
Nếu k0 +)m,n đồng dư mod 5 =>m-n chia hết cho 5
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4)
Các trường hợp (1,4),(2,3) =>m+n chia hết cho5
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại)
Vậy C chia hết cho 5.
Từ kết quả trên => C chia hết cho 30( đpcm).
CMR: mn(m4-n4) chia hết cho 30
cho m,n nguyên CMR mn(m30-n30) chia hết cho 14322
cmr : a) 3^(2n+1) + 2^(2n+2) chia hết cho 7
b) mn(m^4-n^4) chia hết cho 30
Các bn giúp mk nha
Ai nhanh nhất mk sẽ tick cho
thanks các bn nhiều