Cho x,y,z #0 và x+y-z =-2 và 1/x+1/y-1/z =0
Tính x^2+y^2+z^2
B1: Cho x,y,z = 0. Tính Q= ( x-y/z + y-z/x + z-x/y) ( z/x-y + x/y-z + y/ z-x)
B2: Cho x√x + y√y + z√z = 3√xyz. Tính Q = ( 1+ x/y) ( 1+ y/z)( 1+z/x)
cho x;y;z thuộc Z biết (x-y)(y-z)(z-x)=x+y+z
chứng minh x+y+z chia hết cho 27
+) Th1: nếu 3 số x;y;z có cùng số dư khi chia cho 3 => x - y ; y - z; z - x chia hết cho 3
=> Tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 =27
+) Th2: Nếu có 2 trong 3 số có cùng số dư khi chia cho 3. Giả sử hai số đó là x; y.
*Nếu x; y chia cho 3 dư 0 => x - y chia hết cho 3
mà (x - y)(y - z)(z -x) = x+ y + z => x+ y + z chia hết cho 3 => z chia hết cho 3
=> (y - z); (z - x) chia hêtw cho 3 => tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 = 27
* Nếu x; y chia cho 3 dư 1 => x - y chia hết cho 3 => x+ y + z chia hết cho 3. mà x + y chia cho 3 dư 2 => z chia cho 3 dư 1
=> x; y ; z chia cho 3 có cùng số dư => Tích (x - y)(y - z)(z-x) chia hết cho 27
* Tương tự, nếu x; y chia cho 3 dư 2 => z chia cho 3 dư 2 => Tích (x - y)(y - z)(z - x) chia hết cho 27
=> x+ y + z chia hết cho 27
+) Th3: Cả số x; y ; z không có cùng số dư khi cho 3
=> x; y; z chia cho 3 dư là 0;1 ; 2 và các hiệu x - y ; y - z; z - x không chia hết cho 3
x; y ;z chia cho 3 dư 0; 1;2 => x+ y + z chia hết cho 3
tích (x - y)(y - z)(z - x) không chia hết cho 3 mà (x - y)(y - z)(z - x) = x+ y + z
=> Th3 không xảy ra
Vậy ....
cho 3 số x;y;z sao cho : x(x-y+z)=5;y(y-z-x)=24;z(z+x-y)=7 . Tim |y|
Cho (y-z)/((x-y)*(x-z))+(x-z)/((y-x)*(y-z))+(x-y)/((z-x)*(z-y)) biết x=759, y=742, z=850
Cho x,y,z thỏa mãn (x-y)(y-z)(z-x)=x+y+z. CM: x+y+z chia hết cho 27
- Nếu x,y,z khác số dư khi chia cho 3
+ Nếu có 2 số chia hết cho 3.Số còn lại không chia hết cho 3.Giả sử x, y đều chia hết cho 3, z không chia hết cho 3
=> x + y + z không chia hết cho 3. Do x, y đều chia hết cho 3 nên (x−y)⋮3
=> (x − y)(y − z)(z − x)⋮3 (Vô lý do (x − y)(y − z)(z − x) = x + y + z )
+ Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3.Tương tự dẫn đến vô lý.
Vậy cả 3 số có cùng số dư khi chia cho 3
=>(x − y)⋮3;(y − z)⋮3;(z − x)⋮3
=>(x − y)(y − z)(z − x)⋮27
=> x + y + z⋮27
Cho 1/x+y +1/y+z +1/z+x=0 Tính P=(y+z)(z+x)/(x+y)^2 + (x+y)(z+x)/(y+z)^2+ (y+z)(x+y)/(z+x)^2
Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)
Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)
\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)
\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\))
\(=3\)
Vậy P=3
cho x,y,z ( Z thỏa mãn (x-y)(y-z)(z-x)=x+y+z . chứng minh x+y+z chia hết cho 27
ta có:
Từ x/3 = y/4 => x/9 = y/12 (1)
Từ y/3 = z/5 => y/12 = z/20 (2)
Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20
Áp dụng TC DTS BN ta có:
2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3
Từ 2x/18 = 3 => x = 27
Từ 3y/36 = 3 => y = 36
Từ x/20 = 3 => z = 60
OoO_Nhok_Lạnh_Lùng_OoO: nhìn mấy thg như m` ngứa mắt vc, ko làm thì cút hộ đây ko phải web kiếm ăn
cho x,y,z thoả mãn :
(x-y)(y-z)(z-x) = x+y+z và x,y,z là số nguyên
cm x+y+z chia hết cho 27
Cho x,y,z là các số hữu tỉ khác 0 sao cho x+y-z/z=x-y+z/y=-x+y+z/x.
Tìm giá trị của biểu thức P=(x+y)(y+z)(z+x)/xyz
Cho hỏi ko phải cô giáo có dc làm ko:v
Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)
\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)
Xét \(x+y+z\ne0\) ta có:
\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)
\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)
\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó:
\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)
giúp mình với , các cô giáo ơi giúp con con ko làm được ạ lát nữa con phải nộp rồi
cho x,y,z là các số nguyên sao cho (x-y)(y-z)(x-z) = x+ y +z. cmr x+ y +z là B(27)