Những câu hỏi liên quan
HM
Xem chi tiết
NA
15 tháng 10 2016 lúc 22:17

Nếu p là số chẵn thì 8p là số chẵn.

Ta có: 8p - 1 là số lẻ nên p là số nguyên tố chẵn.

Vì p là số nguyên tố chẵn nên p = 2. Khi đó 8p - 1 = 15.

15 là hợp số. 

Bình luận (0)
NK
Xem chi tiết
H24
6 tháng 3 2021 lúc 22:47

Nếu p = 3 thì 8p-1 = 23 là số nguyên tố và 8p+1 = 25 là hợp số (thỏa mãn)

Với p > 3 :

Xét ba số nguyên liên tiếp : 8p-1 , 8p , 8p+1 . Trong ba số này ta ắt hẳn sẽ tìm được duy nhất một số chia hết cho 3.

Vì 8p-1 là số nguyên tố và lớn hơn 3 nên không chia hết cho 3.

p là số nguyên tố (p>3) nên 8p không chia hết cho 3

Vậy 8p+1 chia hết cho 3 . Mà 8p+1 > 3 nên không thể là số nguyên tố, hay nói cách khác 8p+1 là hợp số.

CHÚC EM HỌC TỐT!!!

Bình luận (0)
 Khách vãng lai đã xóa
NT
6 tháng 3 2021 lúc 23:23

với p=2 thì 8p-1=8.2-1=15 là hợp số(loại)

với p=3 thì 8p-1=8.3-1=23

8p+1=8.3+1=25 là hợp số

p>3 thì p có dạng là 3k+1(k là số chắn)và 3a+2(a lẻ)

với p=3k+1 thì 8p-1=8(3k+1)+1=24k+9 là hợp số vì chia hết cho 3 loại

với p=3a+2 thì 8p-1=8(3a+2)+2=24k+18 là hợp số vì chia hết cho 2(loại)

vậy với p=3 thì 8p-1 là số nguyên tố và 8p+1 là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
VD
Xem chi tiết
PM
7 tháng 1 2016 lúc 13:35

Xét p=2 thì 8p-1=15 loại
 p=3 thì 8p-1=23 là số ng tố; 8p+1 =25 là hợp số
Nếu p>3 thì p có dạng 3k+1 hoặc 3k+2 (k thuộc N*)
p=3k+1=> 8p+1=8(3k+1)+1=3(8k+3) là hợp số
p=3k+2=> 8p-1=8(3k+2)-1=3(8k+5) là hợp số (L)
vậy nếu p và 8p-1 là số ng tố thì 8p-1 là hợp số

Bình luận (0)
TL
Xem chi tiết
ZD
22 tháng 11 2015 lúc 12:05

Đặt p=2k hoặc p=2k+1

Nếu p=2k+1 thì 8p-1=16k+1-1=16k ko phải là số nguyên tố ( loại)

Vậy p chỉ có thể bằng 2k

=>  8p+1=16k+1+1=16k+2=8(2k+1) là hợp số 

Vậy ...

tick nha

Bình luận (0)
HN
Xem chi tiết
PQ
12 tháng 1 2018 lúc 9:24

Nếu p = 3 suy ra 8p - 1 = 23 là số nguyên tố ; 8p + 1 = 25 là hợp số ( thoả mãn đề bài )

Nếu p \(\ne\)3 ta có :

p - 1 ; p ; p + 1 là ba số nguyên liên tiếp nên phải có một số chia hết cho 3 

Mà p \(\ne\)3 nên p - 1 hoặc p + 1 chia hết cho 3 suy ra (p-1).(p+1) \(⋮\)3

Suy ra : (8p-1).(8p+1) = 64\(p^2\)- 1 = 63\(p^2\)\(p^2\)- 1 = 3.21.\(p^2\)+ (p-1).(p+1) \(⋮\)

Vậy 8p+1 là hợp số 

Bình luận (0)
NT
Xem chi tiết
VD
Xem chi tiết
PH
Xem chi tiết
PT
10 tháng 10 2018 lúc 11:20

a=p hả bạn?

Bình luận (0)