Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NX
Xem chi tiết
DA
Xem chi tiết

Giải:

a) Gọi dãy đó là A, ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\) 

\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\) 

\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\) 

\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\) 

Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\) 

\(\Rightarrow A< 1\) 

b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

Ta có:

\(A=\dfrac{10^{11}-1}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-10}{10^{12}-1}\) 

\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\) 

\(10A=1+\dfrac{9}{10^{12}-1}\) 

Tương tự:

\(B=\dfrac{10^{10}+1}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+10}{10^{11}+1}\) 

\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\) 

\(10B=1+\dfrac{9}{10^{11}+1}\) 

Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\) 

\(\Rightarrow A< B\)

Bình luận (0)
H24
Xem chi tiết
H24
11 tháng 2 2017 lúc 12:33

A=1+2+2^2+2^3+....+2^9

2A=2+2^2+2^3+....+2^10

2A-A=2^10-1

A=2^10-1/2

B=5.2^8=(2^2+1).2^8=2^10+2^8

=>B>A

Bình luận (0)
NN
11 tháng 2 2017 lúc 12:34

2A = 2(1 + 2 + 22 + .... + 29 )

= 2 + 22 + 23 + ..... + 210

2A - A = (2 + 22 + 23 + ..... + 210) - (1 + 2 + 22 + .... + 29 )

A = 210 - 1  

B = 5.28 = (22 + 1).28 = 210 + 28

210 - 1 < 210 + 28

=> A < B

Bình luận (0)
VD
Xem chi tiết
NQ
18 tháng 7 2021 lúc 20:38

ta có 

\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)

Vậy A=B

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
TC
16 tháng 7 2021 lúc 14:16

undefined

Bình luận (0)
NG
Xem chi tiết
H24
9 tháng 10 2021 lúc 20:16

a, Ta có: \(\left(\dfrac{1}{2}\right)^{300}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left(\dfrac{1}{3}\right)^{200}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
=> \(\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\)=> \(\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
b, Ta có: \(\left(\dfrac{1}{3}\right)^{75}=\left[\left(\dfrac{1}{3}\right)^3\right]^{25}=\left(\dfrac{1}{27}\right)^{25}\)
\(\left(\dfrac{1}{5}\right)^{50}=\left[\left(\dfrac{1}{5}\right)^2\right]^{25}\)\(=\left(\dfrac{1}{25}\right)^{25}\)
Do \(\left(\dfrac{1}{27}\right)^{25}< \left(\dfrac{1}{25}\right)^{25}=>\left(\dfrac{1}{3}\right)^{75}< \left(\dfrac{1}{5}\right)^{50}\)
Kiểm tra lại bài nhé, học tốt!!

Bình luận (0)
TN
Xem chi tiết
YN
9 tháng 2 2023 lúc 22:58

 

Ta thấy: B là tích của 99 số âm

\(\Rightarrow B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}...\dfrac{9999}{10^2}\)

\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{99.101}{100^2}\)

\(=\dfrac{1.2.3...98.99}{2.3.4...99.100}.\dfrac{3.4.5...100.101}{2.3.4...99.100}\)

\(=\dfrac{1}{2}.\dfrac{101}{100}\)

\(=\dfrac{101}{200}>\dfrac{1}{2}\)

\(\Rightarrow B< -\dfrac{1}{2}\).

Bình luận (0)
TN
12 tháng 2 2023 lúc 21:19

ủa sao từ \(\dfrac{1}{2^2}-1\) lại thành \(1-\dfrac{1}{2^2}\) vậy bạn

Bình luận (0)
TK
Xem chi tiết
NN
11 tháng 9 2017 lúc 19:14

Ta có:

\(2A=2+2^2+2^3+...+2^{101}\)

=>\(2A-A=\left(2+2^2+..+2^{101}\right)-\left(1+2+2^2+..+2^{100}\right)\)

=>\(A=2^{101}-1\)

\(2^{101}-1>2^{100}-1\) nên A>B

Vậy A>B

Bình luận (1)
TH
11 tháng 9 2017 lúc 19:13

Vì A có 2100 và được cộng thêm, B có 2100 phải trừ 1 nên A > B.

ngắn gọn thôi

Bình luận (0)
H24
Xem chi tiết