a \(A=\left|x-\frac{3}{5}\right|+7\)yeu cau tim gia tri nho nhat
TIM GIA TRI DUONG NHO NHAT CUA:
\(A=\frac{1}{3,5-\left|x+5\right|}\)
Để A đạt GTNN
=> \(\frac{1}{3,5-\left|x+5\right|}\)đạt GTNN
=> 3,5 - |x + 5| đạt GTLN (ĐK 3,5 - |x + 5| \(\ne\)0)
mà \(\left|x+5\right|\ge0\forall x\Rightarrow3,5-\left|x+5\right|\le3,5\)
Dấu "=" xảy ra <=> x + 5 = 0 => x = -5
=> 3,5 - |x + 5| đạt GTLN là 3,5 <=> x = -5
Thay x vào A
=> GTNN của A LÀ 1/3,5 <=> x = -5
Tim gia tri nho nhat cua bieu thuc A:
A=\(\frac{x^2+2x+3}{\left(x+2\right)^2}\)
ĐK : \(x\ne-2\)
ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)
\(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\)
vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)
=> \(A>=\frac{2}{3}\)
dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)
tim gia tri nho nhat cua A= \(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
tim gia tri nho nhat cua bieu thuc
\(A=\frac{2015}{\left|x\right|-3}\) voi x nguyen
\(\frac{1}{30-x}+\frac{1}{x-4}+\frac{11}{\sqrt{\left(30-x\right)\left(x-4\right)}}\)
Tim gia tri nho nhat
cau 1: tinh gia tri cua x thoa man
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\sqrt{2}\right)\left(2\sqrt{2}-x\right)=-3\)
cau 2.tinh GTLN cua bieu thuc
\(2x-2x^2+13\)
cau 3. tinh gia tri cua bieu thuc
\(\frac{3^{\left(x+y\right)^2}}{3^{\left(x-y\right)^2}}\)voi xy=\(\frac{1}{2}\)
cau 4. tim GTLN cua
\(-3x^2-6x-4\)
cau 5. cho ham so : f(x)=\(\frac{1}{5x+9}\)
tinh gia tri cua \(f\left(\frac{40}{25}\right)\)
cau 6. cho hinh thang can ABCD . Day nho AB,goc D bang 64 do. tinh so do goc ngoai tai A
Tim gia tri nho nhat cua bieu thuc : A=\(\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)
\(A=\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)
Ta thấy:
\(\left\{{}\begin{matrix}21\left|4x+6\right|+33>0\\3\left|4x+6\right|+5>0\end{matrix}\right.\)
Vậy \(A>0\)
\(MAX_A\Rightarrow MIN_{3\left|4x+6\right|+5}\)
\(\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|+5\ge5\)
Dấu "=" xảy ra khi:
\(3\left|4x+6\right|=0\Rightarrow4x=-6\Rightarrow x=-\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}21\left|4x+6\right|=0\\3\left|4x+6\right|=0\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{33}{5}\)
Cách làm của Phúc khá phức tạp bạn có thể tham khảo cách của mình nha!
Với mọi giá trị của \(x\in R\) ta có:
\(\left\{{}\begin{matrix}21\left|4x+6\right|+33\ge33\\3\left|4x+6\right|+5\ge5\end{matrix}\right.\)
\(\Rightarrow\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\ge\dfrac{33}{5}\)
Để \(\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}=\dfrac{33}{5}\) thì
\(99\left|4x+6\right|+165=105\left|4x+6\right|+165\)
\(\Rightarrow105\left|4x+6\right|-99\left|4x+6\right|=0\)
\(\Rightarrow\left|4x+6\right|=0\Rightarrow x=\dfrac{3}{2}\)
Vậy...........
Chúc bạn học tốt!!!
1)Tim gia tri lon nhat,gia tri nho nhat neu co:
a)\(A=\left(x+1\right)^2-10\)
b)\(B=\left|x-3\right|+\left|x-2023\right|\)
2)Chung minh rang:a^2+3a+1 khong chia het cho 2 (a thuoc Z)
Tim gia tri cua x de bieu thuc A=|x-3|+(-100)co gia tri nho nhat ,tim gia tri nho nhat ay
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3