Những câu hỏi liên quan
NC
Xem chi tiết
FT
21 tháng 1 2016 lúc 21:19

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Tick nhé  

Bình luận (0)
PH
Xem chi tiết
HP
17 tháng 2 2016 lúc 19:57

10n+18n-1

=10n-1-9n+27n

=99..9-9n+27n=9(11..1-n)+27n

  n số 9               n số 1

vì 11...1(n số 1) có tổng các chữ số =n =>11..1-n chia hết cho 3

                                                              n số 1

=>9(11...1-n) chia hết cho 27 10n+18n-1 chia hết cho 27(đpcm)

       n số 1  

Bình luận (0)
LM
17 tháng 2 2016 lúc 19:59

mih đồng ý với Hoàng Phúc

Bình luận (0)
LH
17 tháng 2 2016 lúc 20:14

Ta có :

10n + 18n - 1 = 1000...00 (n số 0) + 18n - 1

                      = (100...00 - 1) +18n

                      = 999...999 (n số 9) + 18n                       

Vì :

999...999 +18n = 3 x 333...333 (n số 3) + 3 x 6n = 3(333...333 + 6n)chia hết cho 3999...999 +18n = 9 x 111...111 (n số 1) + 9 x 2n = 3(111...111 + 2n)chia hết cho 9

Vì 9 x 3 = 27 nên  999...999 + 18n chia hết cho 27

\(\Rightarrow\)10n + 18n - 1 chia hết cho 27

Bình luận (0)
HD
Xem chi tiết
NT
13 tháng 4 2016 lúc 5:45

\(10^n\)+18n -1=10..00(có n chữ số 0) -1+18n

                    =99...9(có n chữ số 9)-9n+27n

                    =9x(11...1(có n chữ số 1)-n)+27n

Ta thấy số 111...1 có n chữ số 1. Vậy tổng các chữ số của nó là n

Vậy 111...1(có n chữ số 1) và n chia 3 có cùng số dư

Vậy 111..1(có n chữ số 1)-n chia hết cho 3

Suy ra: 9x(11...1(có n chữ số 1)-n) chia hết cho 27, 27n chia hết cho 27

Suy ra A chia hết cho 27(đpcm)

                 

Bình luận (0)
NA
22 tháng 1 2019 lúc 20:48

A = 10n + 18n - 1
B1: Xét n = 1
=> A = 10 + 18 -1 = 27 ⋮ 27
Vậy với n = 1, mệnh đề đúng.
B2: Giả sử với n = k, mệnh đề đúng, tức là: 10k + 18k - 1 ⋮ 27
B3: Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng. Tức là: 10k+1 + 18(k+1) - 1 ⋮ 27.
Thật vậy, theo giả thiết quy nạp:
10k+1 + 18k + 18 - 1 = 10k.10 + 18k.10 - 10 + 27 - 9.18k = 10.(10k + 18k - 1) + (27 - 6.27k)
Có: 10.(10k + 18k - 1) ⋮ 27
(27 - 6.27k) ⋮ 27
=> 10k+1 + 18(k+1) - 1 ⋮ 27.
=> Điều phải chứng minh

Bình luận (0)
CQ
Xem chi tiết
SG
18 tháng 6 2016 lúc 16:30

A = 10n + 18n - 1

A = 10n - 1 - 9n + 27n

A = 99...9 - 9n + 27n

 n chữ số 9

A = 9.(11...1 - n) + 27n

       n chữ số 1

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 11..1 - n chia hết cho 3

                                                                                                          n chữ số 1

=> 9.(11...1 - n) chia hết cho 27 mà 27n chia hết cho 27

    n chữ số 1 

=> đpcm

Bình luận (0)
HH
Xem chi tiết
NC
22 tháng 3 2020 lúc 23:22

Chứng minh quy nạp theo n 

\(10^n+18n-1⋮27\)

+) với n = 0 ta có: \(10^0+18.0-1=0⋮27\)

=> (1) đúng với n =0

+) g/s (1) đúng cho tới n ( với n là số tư nhiên )

+) ta chứng minh (1) đúng với n + 1

Ta có: \(10^{n+1}+18\left(n+1\right)-1=10.10^n+18n+17=10\left(10^n+18n-1\right)-10.18n+10+18n+17\)

\(=10\left(10^n+18n-1\right)-9.18n+27⋮27\)

=> ( 1) đúng với n + 1

Vậy (1) đúng với mọi số tự nhiên n

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TD
13 tháng 9 2015 lúc 10:33

 

Ta có : 10^n + 18n - 1 = 10^n - 1 - 9n + 27n 

                                 = 999....99 (nchu so 9) - 9n + 27n 

                                 =9 . (111......111 - n ) + 27n

Vì n và so co tong cac chu so bang n khi chia cho 9 deu co cung so du nen hieu cua chung chia het cho 9 

Suy ra 111....111 (n chu so 1 ) - n chia het cho 9 

Suy ra ( 111....111 - n ) . 9 chia het cho 9 vi 9 chia het cho 3

Mà 27n chia het cho 27 nen suy ra 10^n + 18n - 1 chia het cho 27 

lik-e cho mình nhé bạn

Bình luận (0)
NT
Xem chi tiết
PT
10 tháng 11 2017 lúc 10:08

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
NT
19 tháng 10 2017 lúc 14:30

Xin lỗi nha đề sai :

đề đúng đây :

Chứng minh 10n+18n - 1 chia hết cho 27 ( với n là số tự nhiên )

Bình luận (0)
H24
3 tháng 12 2018 lúc 20:38

ẩu quá

Bình luận (0)
H24
Xem chi tiết
FT
13 tháng 2 2016 lúc 10:35

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
DB
Xem chi tiết
GC
10 tháng 5 2015 lúc 9:46

1.

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

đúng cái nhe bạn

Bình luận (0)
PA
10 tháng 5 2015 lúc 21:46

2.

Gọi d là ƯCLN (16n+3; 12n+2)

=> 16n+3 chia hết cho d; 12n+2 chia hết cho d

Nên 3. (16n+3) chia hết cho d; 4. (12n+2) chia hết cho d

=> 48n+9 chia hết cho d; 48n+8 chia hết cho d

=> (48n+9)-(48n+8) chia hết cho d

=>            1           chia hết cho d

=> d \(\in\) {1; -1}

Vậy phân số \(\frac{16n+3}{12n+2}\) là phân số tối giản.

Bình luận (0)
BB
11 tháng 5 2015 lúc 9:10

1.
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27

2.

Gọi d là ƯCLN (16n+3; 12n+2)

=> 16n+3 chia hết cho d; 12n+2 chia hết cho d

Nên 3. (16n+3) chia hết cho d; 4. (12n+2) chia hết cho d

=> 48n+9 chia hết cho d; 48n+8 chia hết cho d

=> (48n+9)-(48n+8) chia hết cho d

=>            1           chia hết cho d

=> d  {1; -1} => ĐPCM

Bình luận (0)