Cho x,y,z >0 thỏa xy+yz+zx=9/4 . Tìm GTNN cúa P=x2+14y2+10z2-4√xy
Cho x,y,z thỏa mãn xy+yz+zx=1
tìm GTNN của A= x^4+y^4+z^4
Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)
Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Cho các số x, y, z thỏa mãn điều kiện: xy+yz+zx=1
Tìm GTNN của P=x^4+y^4+z^4
cho x,y,z thỏa măn xy+yz+zx=2006.TÍnh GTNN của P=x^4+y^4+z^4
Ta có: \(P=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\)
trả lời rõ ra đc k bạn nếu đc thì thank bạn nhìu nha
Áp dụng BĐT phụ: \(a^2+b^2+c^2\ge ab+bc+ca\) và \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Ta có: \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\)
Dấu "=" khi \(x=y=z=\sqrt{\frac{2006}{3}}\)
Cho x, y, z là các số dương thỏa mãn \(xy+yz+zx=\dfrac{9}{4}\)
Tìm gtnn P=\(x^2+14y^2+10z^2-4.\sqrt{2y}\)
Cho x,y,z thỏa mản x+y+z=3. Tìm gtnn của xy+yz+zx
cho x y z > 0 và x+y+z=1. Tìm GTNN của \(P=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{zx}{y+zx}}\)
Bài này phải tìm GTLN chứ nhỉ?!
Cho các số thực dương x, y, z thỏa mãn x3 + y3 + z3 = 24. Tìm GTNN của biểu thức
\(M=\dfrac{xyz+2\left(x+y+z\right)^2}{xy+yz+zx}-\dfrac{8}{xy+yz+zx+1}\)
Cho x,y,z > 0 thỏa xy+yz+zx=xyz. Chứng minh:
\(\frac{x^4+y^4}{xy\left(x^3+y^3\right)}+\frac{y^4+z^4}{yz\left(y^3+z^3\right)}+\frac{z^4+x^4}{zx\left(z^3+x^3\right)}\ge1\)
Cho các số thực dương x,y,z thỏa mãn: xy+yz+zx=3. Tìm GTNN của:
\(P=\frac{x^4}{y+3z}+\frac{y^4}{z+3x}+\frac{z^4}{z+3y}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)
\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:
\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)
Cộng theo vế ta có:
\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)
Dấu "=" khi x=y=z=1
xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy
Áp dụng bất đẳng thức AM-GM, ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)
<=>\(a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)
<=>\(\left(a+b+c\right)^2\ge9\)
<=>\(a+b+c\ge3\)