Những câu hỏi liên quan
BD
Xem chi tiết
TP
25 tháng 12 2015 lúc 21:10

Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)

Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Bình luận (0)
TD
Xem chi tiết
HH
Xem chi tiết
PC
10 tháng 9 2018 lúc 21:08

Ta có: \(P=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\)

Bình luận (0)
HH
10 tháng 9 2018 lúc 21:12

trả lời rõ ra đc k bạn nếu đc thì thank bạn nhìu nha

Bình luận (0)
PC
10 tháng 9 2018 lúc 21:17

Áp dụng BĐT phụ:  \(a^2+b^2+c^2\ge ab+bc+ca\)  và \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\) 

Ta có: \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\) 

Dấu "=" khi \(x=y=z=\sqrt{\frac{2006}{3}}\)

Bình luận (0)
HT
Xem chi tiết
H24
21 tháng 5 2021 lúc 14:53

undefined

Bình luận (0)
MS
Xem chi tiết
ND
Xem chi tiết
TL
21 tháng 8 2020 lúc 20:17

Bài này phải tìm GTLN chứ nhỉ?!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
BT
Xem chi tiết
LC
Xem chi tiết
TN
28 tháng 11 2016 lúc 21:27

Áp dụng BĐT AM-GM ta có:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Cộng theo vế ta có:

\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)

Dấu "=" khi x=y=z=1

Bình luận (0)
PH
28 tháng 11 2016 lúc 21:53

xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy

Bình luận (0)
LC
28 tháng 11 2016 lúc 22:07

Áp dụng bất đẳng thức AM-GM, ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

<=>\(a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

<=>\(\left(a+b+c\right)^2\ge9\)

<=>\(a+b+c\ge3\)

Bình luận (0)