Rút gọn biểu thức : A= 2^12.3^5-4^6.81/(2^2.3)^6+8^4.3^5
a, Cho biểu thức : P = x-4xy+y . Tính giá trị P với IxI=1,5 ; y=-0,75
b, Rút gọn biểu thức \(A=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)
Rút gọn biểu thức : A= \(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)
\(A=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}=\frac{2}{3.4}=\frac{1}{6}\)
a,Cho biểu thức : P= x - 4xy+y. Tính giá trị của P với lxl = 1,5;y=-0,75
b,Rút gọn biểu thức : \(A=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^3}\)
=\(\frac{2^{12}.3^5+2^{12}.3^4}{2^{12}.3^6+2^{12}.3^3}\)
=\(\frac{2^{12}\left(3^5+3^4\right)}{2^{12}\left(3^6+3^3\right)}\)
\(=\frac{324}{756}\)
=\(\frac{3}{7}\)
Rút gọn
A = \(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6.8^4.3^5}\)
A=663552
(22⋅3)6⋅84⋅35
A= 663552
4096⋅177147⋅4096
A= 663552
2972033482752
A= 1
4478976
a, Cho biểu thức \(P=2x+2xy-y\)
Tính giá trị của P với \(|x|=2.5\)và \(y=-0.75\)
b, Rút gọn biểu thức
\(Q=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)
a) P = 2x + 2xy - y
|x| = 2,5 => x thuộc { 2,5; -2,5 }
* TH1 : x = 2,5 và y = -0,75
Thay vào P ta có :
P = 2 . 2,5 + 2 . 2,5 . (-0,75) - ( -0,75 )
P = 2
* TH2 : x = -2,5 và y = -0,75
Thay vào P ta có :
P = 2 . ( -2,5 ) + 2 . ( -2,5 ) . ( -0,75 ) - ( -0,75 )
P = -0,5
Vậy.....
b) \(Q=\frac{2^{12}\cdot3^5-4^6\cdot81}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}\)
\(Q=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}\)
\(Q=\frac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}\)
\(Q=\frac{2}{3\cdot4}\)
\(Q=\frac{1}{3\cdot2}\)
\(Q=\frac{1}{6}\)
p/s: P làm Q, Q làm P :D
A=2^12.3^5-4^6.9^2/(2^2.3)^6+8^4.3^5
A=212x35-46x92:(22x3)6+84x35
=212x35-212x34:212x36+212x35
=212(35-34+35):212x36=212x405:(212x36)=1x\(\dfrac{5}{9}\)=\(\dfrac{5}{9}\).
a,2^12.3^54^6.81/(2^2.3)^6+8^4.3^5
b, 4.(-1/2)^3-2.(-1/2)^2+3.(-1/2)+1
c, 5x-7=3x+9
d, 5x-|9-7x|=3
e, -5+|3x-1|+6=|-4|
g, (x-1)^2=(x-1)^4
h, 5^-1.25=125
i, |x+1|+|x+2|+|x+3|=4x
c) \(5x-7=3x+9\)
d) \(5x-\left|9-7x\right|=3\)
e) \(-5+\left|3x-1\right|+6=\left|-4\right|\)
h) \(5^{-1}.25^x=125\)
\(\Rightarrow\frac{1}{5}.25^x=125\)
\(\Rightarrow25^x=125:\frac{1}{5}\)
\(\Rightarrow25^x=625\)
\(\Rightarrow25^x=25^2\)
\(\Rightarrow x=2\)
Vậy \(x=2.\)
Chúc bạn học tốt!
g) \(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Rightarrow\left(x-1\right)^2.\left[1-\left(x-1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\1-\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=1+1\\x=\left(-1\right)+1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{1;2;0\right\}.\)
i) \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\)
Ta có:
\(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\end{matrix}\right.\forall x.\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\) \(\forall x.\)
\(\Rightarrow4x\ge0\)
\(\Rightarrow x\ge0.\)
Lúc này ta có: \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=4x\)
\(\Rightarrow x+1+x+2+x+3=4x\)
\(\Rightarrow\left(x+x+x\right)+\left(1+2+3\right)=4x\)
\(\Rightarrow3x+6=4x\)
\(\Rightarrow6=4x-3x\)
\(\Rightarrow6=1x\)
\(\Rightarrow x=6\left(TM\right).\)
Vậy \(x=6.\)
Chúc bạn học tốt!
Rút gọn:
a) 2^12.3^5-4^6.3^6/2^12+9^3+8^4.3^5
B) 49^6.5-7^11/(-7)^10.5-2.49^5
Câu 1 xem kỉ đề
\(B,\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5-2.49^5}=\frac{7^{12}.5-7^{11}}{7^{10}.5-2.7^{10}}=\frac{7^{11}.\left(7.5-1\right)}{7^{10}.\left(5-2\right)}=\frac{7.34}{3}=\frac{238}{3}\)
a) A=212.35-\(\frac{2^{12}.3^6}{2^{12}}\)+93+84.35
=212.35-36+36+212.35
=213.35
b)B=496.5-5.\(\frac{7^{11}}{\left(-7\right)^{10}}-2.49^5\)
=496.5-7.5-2.495
=712.5-7.5-2.710
Rút gọn biểu thức:
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^4.14^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^4.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^4.7^3\left(5^5+2^3\right)}\)
\(=\frac{1}{6}+\frac{93750}{3133}\)