So sánh 2007/2005 và 2005/2003
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A=2002/2001+2003/2002+2004/2003+2005/2004+2006/2005+2007/2006+2008/2007+2009/2008
Hãy so sánh A với 8 và giải thích tại sao
2002/2001>:,2003/2002>1.....
CÓ 8 PHÂN SỐ MỖI PHÂN SỐ CÓ GIÁ TRỊ LỚN HƠN 1 VÂY TỔNG CỦA 8 PHÂN SỐ LỚN HƠN 1 SẼ LỚN HƠN 8.
Cho A =2002/2001+2003/2002+2004/2003+2005/2004+2006/2005+2007/2006+2008/20007+2009/20008.So sánh A với 8
Trình bày bài giải bài toán sau
Cho A=2002/2001+2003/2002+ 2004/2003+2005/2004+2006/2005+2007/2006+2008/2007+2009/2008
Hãy so sánh A với 8
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>\frac{2001}{2001}+\frac{2002}{2002}+\frac{2003}{2003}+\frac{2004}{2004}+\frac{2005}{2005}+\frac{2006}{2006}+\frac{2007}{2007}+\frac{2008}{2008}\)
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>1+1+1+1+1+1+1+1\)\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)
\(A>8\)
không tính kết quả hãy so sánh:
A =2005 x 2005
b = 2003 x 2007
\(A=2005\times2005\)
\(B=2003\times2007\)
Ta có :
\(A=2005\times2005\) \(B=2003\times2007\)
\(A=2005\times\left(2003+2\right)\) \(B=2003\times\left(2005+2\right)\)
\(A=2005\times2003+2005\times2\) \(B=2003\times2005+2003\times2\)
\(A=2005\times2003+4010\) \(B=2003\times2005+4006\)
Vì ta thấy \(2005\times2003+4010>2003\times2005+4006\)
Mà vế \(2005\times2003\) của A và B đều bằng nhau
nhưng vế \(4010>4006\)
\(\Leftrightarrow A>B.\)
So sánh A = 2005:1/6-2//2004:1/2006+2003 và B= 1:2007/2006
Tinh nhanh :
a) Tu so : 2005*2007-1
Mau so : 2004+2005*2006
b) Tu so : 2003*2004+2005*10+1994
Mau so: 2005*2004-2003*2004
a) \(\frac{2005.2007-1}{2004+2005.2006}=\frac{\left(2014+1\right).2007-1}{2004+2005.2006}=\frac{2004+2005.2007-1}{2004+2005-2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)
so sánh
a) 2012/2013 và 2013/2014
b) 2003* 2004* 2005* 2006 / 2007 / 2006* 2005* 2004 và 2007 * 2008 *2009 * 2010 / 2011 * 2010 * 2009 * 2008
giúp mình nha mình cần gấp cẩm ơn các bạn
a)2012/2013<2013/2014
b)2003x........< 2007x......
cho mình nha
So sánh:S=√1*2007 +√3*2005 +√5*2003 +...+√2007*1 và 1004^2
\(S=\sqrt[]{1.2007}+\sqrt[]{3.2005}+\sqrt[]{5.2003}+...+\sqrt[]{2007.1}\)
Tổng số hạng của S là :
\(\left(2007-1\right):2+1=1004\left(số,hạng\right)\)
Áp dụng bất đảng Cauchy cho 1004 cặp số \(\left(1;2007\right);\left(3;2005\right);\left(5;2003\right)...\left(2007;1\right)\)
\(\sqrt[]{1.2007}< \dfrac{1+2007}{2}=\dfrac{2008}{2}\)
\(\sqrt[]{3.2005}< \dfrac{3+2005}{2}=\dfrac{2008}{2}\)
\(\sqrt[]{5.2003}< \dfrac{5+2003}{2}=\dfrac{2008}{2}\)
\(.....\)
\(\sqrt[]{2007.1}< \dfrac{2007+1}{2}=\dfrac{2008}{2}\)
\(\Rightarrow S=\sqrt[]{1.2007}+\sqrt[]{3.2005}+\sqrt[]{5.2003}+...+\sqrt[]{2007.1}< 1004.\dfrac{2008}{2}=1004^2\)
Vậy \(S< 1004^2\)
Đính chính
... Bất đẳng thức Cauchy...
So sánh
2003/2004+2004/2005+2005/2003 và 3
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
đấy là câu hỏi về toán mà đâu phải là câu lung tung đâu