Căn bậc hai số học của 36 bằng:
A. \(^{\sqrt{\left(-6\right)^2}}\)
B. \(-\sqrt{\left(-6\right)^2}\)
C.\(-\sqrt{6^2}\)
D.\(\sqrt{\left(-6\right)^2}\) và \(-\sqrt{\left(-6\right)^2}\)
Căn bậc hai số học của 36 bằng:
A. \(^{\sqrt{\left(-6\right)^2}}\)
B. \(-\sqrt{\left(-6\right)^2}\)
C.\(-\sqrt{6^2}\)
D.\(\sqrt{\left(-6\right)^2}\) và \(-\sqrt{\left(-6\right)^2}\)
Số nào dưới đây bằng căn bậc hai số học 36?
_6và 6 _6 6 _\(\sqrt{36}\)
giải giúp mk bài này:tìm căn bậc hai số học rồi suy ra căn bậc hai của chúng
\(3-2\sqrt{2}\)
\(5+2\sqrt{6}\)
\(7-4\sqrt{3}\)
mk mới học thử nên chưa rõ lắm
Căn bậc hai số của 64 có thể viết \(\sqrt{64}=6+\sqrt{4}\). Tìm tất cả các số tự nhiên có 2 chứ số viết được căn bậc hai của chúng duới dạng trên và là một số nguyên
Gọi số đó là 10a+b (a, b nguyên; 0<a<10; 0<=b<10)
Khi đó: √(10a+b) = a + √b
Để √(10a+b) nguyên thì √b nguyên <=> b = 1 hoặc 4 hoặc 9
Bình phương hai vế => a^2 - (10-2√b)a = 0
<=> a(a-10+2√b) = 0
a = 0 (loại)
=> a-10+2√b = 0 <=> a = 10-2√b
+) b = 1 <=> a = 8 => 81 thỏa mãn
+) b = 4 <=> a = 6 => 64 thỏa mãn
+) b = 9 <=> a = 4 => 49 thỏa mãn
ok bạn nhá
\(\sqrt[3]{x+6}+x^2=7-\sqrt{x-1}\)
căn bậc ba của (x+6) + x2 = 7 - căn bậc hai của (x-1)
Điều kiện $x\geq 1$.
Nếu x>2 thì VT>6>VPNếu x<2 thì VT<6<VPVậy phương trình có nghiệm duy nhất x=2
Hãy rút gọn :
\(Q=\sqrt{6+\sqrt{6+\sqrt{6+...}}}\) \(\left(\text{vô số căn bậc hai}\right)\)
căn bậc hai của 64 có thể viết dưới dạng như sau:\(\sqrt{64}+6+\sqrt{4}\)
hỏi có tồn tại hay không các số có 2 chữ số có thể viết căn bậc hai của chúng dưới dạng nhhư trên và là 1 số nguyên ? hãy chỉ ra 2 số đó
a) Đọc các số sau: \(\sqrt {15} ;\sqrt {27,6} ;\sqrt {0,82} \)
b) Viết các số sau: căn bậc hai số học của 39; căn bậc hai số học của \(\frac{9}{{11}}\); căn bậc hai số học của \(\frac{{89}}{{27}}\)
a) \(\sqrt {15} \) đọc là: căn bậc hai số học của mười lăm
\(\sqrt {27,6} \) đọc là: căn bậc hai số học của hai mươi bảy phẩy sáu
\(\sqrt {0,82} \) đọc là: căn bậc hai số học của không phẩy tám mươi hai
b) Căn bậc hai số học của 39 viết là: \(\sqrt {39} \)
Căn bậc hai số học của \(\frac{9}{{11}}\) viết là: \(\sqrt {\frac{9}{{11}}} \)
Căn bậc hai số học của \(\frac{{89}}{{27}}\) viết là: \(\sqrt {\frac{{89}}{{27}}} \)
Căn bậc hai của 64 có thể viết dưới dạng như sau: \(\sqrt{64}=6+\sqrt{4}\)
Hỏi có tồn tại hay không các số có hai chữ số có thể viết căn bậc hai của chúng dười dạng như trên và là một số nguyên, hãy chỉ ra toàn bộ các số đó.
Help me!!!
CÁC SỐ NÀO SAU ĐÂY CÓ CĂN BẬC HAI SỐ HỌC? GIẢI THÍCH
1) \(2-\sqrt{3}\)
2) \(4-\sqrt{15}\)
3) \(2\sqrt{3}-\sqrt{6}-1\)
4) \(3\sqrt{2}-2\sqrt{5}+1\)
5) \(11-\sqrt{26}-\sqrt{37}\)
6) \(\sqrt{26}+\sqrt{17}+1-\sqrt{99}\)
Lời giải:
Một số không âm thì sẽ có căn bậc 2 số học nên chỉ cần chứng minh biểu thức không âm là được
1.
$2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0$ nên biểu thức có CBHSH
2.
$4-\sqrt{15}=\sqrt{16}-\sqrt{15}>0$ nên biểu thức có CBHSH
3.
$(2\sqrt{3})^2=12$
$(\sqrt{6}+1)^2=7+2\sqrt{6}=7+\sqrt{24}< 7+\sqrt{25}=12$
$\Rightarrow (2\sqrt{3})^2>(\sqrt{6}+1)^2\Rightarrow 2\sqrt{3}>\sqrt{6}+1$
$\Rightarrow 2\sqrt{3}-\sqrt{6}-1>0$ nên có CBHSH
4.
$(2\sqrt{5})^2=20$
$(3\sqrt{2}+1)^2=19+6\sqrt{2}>19+1=20$
$\Rightarrow (2\sqrt{5})^2< (3\sqrt{2}+1)^2\Rightarrow 2\sqrt{5}< 3\sqrt{2}+1$
$\Rightarrow 3\sqrt{2}-2\sqrt{5}+1>0$ nên có CBHSH
5.
$\sqrt{26}>\sqrt{25}=5$
$\sqrt{37}>\sqrt{36}=6$
$\Rightarrow 11-\sqrt{26}-\sqrt{37}=(5-\sqrt{26})+(6-\sqrt{37})< 0$ nên không có CBHSH
6.
$\sqrt{26}>\sqrt{25}=5$
$\sqrt{17}>\sqrt{16}=4$
$\Rightarrow \sqrt{26}+\sqrt{17}+1>10=\sqrt{100}>\sqrt{99}$
$\Rightarrow \sqrt{26}+\sqrt{17}+1-\sqrt{99}>0$ nên có CBHSH