Cho An=1/√5(((1+√5)/2)n -((1-√5)/2)n )) CMR A2+2=A1+n∆+An An thuoc N
Cho An=1/√5(((1+√5)/2)n -((1-√5)/2)n ))
CMR A2+2=A1+n∆+An
An thuoc N
Cho so A=n(n-1)(n+1)(n^2+1) voi n thuoc N.
a)CMR A chia het cho 10
b)CMR chu so tan cung cua cac STN n va n^5 la nhu nhau
Cho A=1/5^2+2/5^3+3/5^4+.........+n/5^n+1+........+11/5^12 với n thuoc N. Chung minh A>1/16
1)a)tìm n thuộc N*để 3n+1chia hết cho5n-2
b)tìm các chữ số a,,b,c để 7268abc chia hết cho 7,12,8,9
2)cho a và blaf 2 số nguyên tố cùng nhau sao cho a,b khác tính chẵn lẻ cmr a+b và a(a+2)+ab là 2 số nguyên tố cùng nhau
3)cmr với mọi n thuộc N* thì
1.2.3+2.3.5+3.4.7+..+n(n+1)(2n+1)=n(n+1)^2(n+2)/2
4)cho 17 số tự nhiên khác 0:a1,a2,a3,....,a17mà a1+a2+a3+...+a17=153153
cmr a1^5+a2^9+a3^13+...+a17^69 không phải số chính phương
ai muốn kết bn với tớ thì hãy click cho tớ nhé
a) cm (2^4n+1)+3 chia het cho 5 voi moi n thuoc N
b) cm (2^4n+2)+1 chia het cho 5 voi moi n thuoc N
a) cách 1
2^4n = (24)n = ......6( có chữ số tận cùng là 6
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0)
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?
cách 2
(2^4n+1)+3
=2*(24)n+3
=2*16n+3
=2(15 + 1)n+3
=2(5K+1) +3(với K là một số tự nhiên thuộc N)
=10K+5 chia hết cho 5
b ) áp dụng vào giống bài a thay đổi số thôi là đc
k mk nha!!!^~^
Ta có : (24.n+1)+3 = (.....6) + 1) + 3 = (.....0)
=> (24.n+1)+3 có chữ số tận cùng là 0
=> (24.n+1)+3 chia hết cho 5
bai 1:tim x
a) (x+1/5)2+17/25=26/25
b)-1va 5/27-(3x-7/9)3=-24/27
bai 2:cho A=n+2/n-5 (n thuoc Z ;n khac 5).Tim x de A thuoc Z
1a. x=-0,8
b)-1va 5/27-(3x-7/9)3=-24/27 mik ko hỉu đề
2.n= 6
1. CMR: ∀ n∈\(N^{\cdot}\)
a) \(A=5^n+2.3^{n-1}+1\text{⋮}8\)
b) \(B=3^{n+2}+4^{2n+1}\text{⋮}13\)
c) \(C=6^{2n}+3^{n+2}+3^n\text{⋮}11\)
d) \(D=1^n+2^n+5^n+8^n\text{⋮}8\)
2. \(CMR:\) \(1^{2002}+2^{2002}+...+2002^{2002}\text{⋮}11\)
3. a) cho a,b ∈Z, t/m:\(a^2+b^2\text{⋮}7\). \(CMR:a\text{⋮}7;b\text{⋮}7\)
b) \(CMR:\) Nếu \(a^2+b^2\text{⋮}21\) thì \(a^2+b^2\text{⋮}441\) (a,b ∈Z)
\(1,\)
\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)
Với \(n=k+1\)
\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)
Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)
Theo pp quy nạp ta được đpcm
\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)
Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)
Với \(n=k+1\)
\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)
Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)
Theo pp quy nạp ta được đpcm
\(1,\)
\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)
Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)
\(d,D=1^n+2^n+5^n+8^n\)
Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)
\(2,\)
Ta thấy:\(1+2+...+2002=\left(2002+1\right)\left(2002-1+1\right):2=2003\cdot2002:2⋮11\left(2002⋮11\right)\)
Do đó \(1^{2002}+2^{2002}+...+2002^{2002}⋮1+2+...+2002⋮11\)
Bai 1:Cho A=5- 5^2 + 5^3 - 5^4 +...-5^98 + 5^99 . Tinh tong A.
Chung to (2^n + 1)x( 2^n +2) chia het cho 3 voi moi n la so tu nhien.
Bai 2 :Tim n thuoc Z de (4n-3) chia het cho (3n-2)
Cho A = 1/5^2 + 2/5^3 + 3/5^4 + .... + 11/5^12 + ... + n/5^n+1
với n thuộc N . CMR A < 1/16
Tham khảo bài làm nhé bạn :
Câu hỏi của Nguyễn Thị Ngọc Anh - Toán lớp 6 - Học toán với OnlineMath
^^