\(\frac{298}{719}:\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(\frac{298}{719}:\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(\frac{298}{719}:\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}:0-\frac{2011}{2012}\)
Giá trị phép tính không tồn tại
\(\frac{298}{719}\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(\frac{298}{719}\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}\cdot0-\frac{2011}{2012}\)
\(=0-\frac{2011}{2012}=-\frac{2011}{2012}\)
Tính
a) \(\frac{2}{3}+\frac{1}{3}.\left(\frac{-4}{9}+\frac{5}{6}\right):\frac{7}{12}\)
b) \(\frac{298}{719}:\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(\frac{2}{3}+\frac{1}{3}\left(\frac{-4}{9}+\frac{5}{6}\right)\div\frac{7}{12}\)
\(=\frac{2}{3}+\frac{1}{3}\left(\frac{-4}{9}+\frac{5}{6}\right)\times\frac{12}{7}\)
\(=\frac{2}{3}+\frac{4}{7}\left(\frac{-4}{9}+\frac{5}{6}\right)\)
\(=\frac{2}{3}+\frac{4}{7}\left(\frac{-8}{18}+\frac{15}{18}\right)\)
\(=\frac{2}{3}+\frac{4}{7}.\frac{-7}{18}\)
\(=\frac{6}{9}+\frac{-2}{9}\)
\(=\frac{4}{9}\)
\(\frac{298}{719}\div\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}\div\left(\frac{3}{12}+\frac{1}{12}-\frac{4}{12}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}\div0-\frac{2011}{2012}\)
Vậy biểu thức đại số này không xác định
giúp mình giải mấy bài này nhé:
a) \(\frac{298}{719}:\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\) b)\(\frac{27.18+27.103-120.27}{15.33+33.12}\)
2. rút gọn : B=\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(\frac{27.\left(18+103-120\right)}{33.\left(15+12\right)}\)=\(\frac{27.1}{33.27}\)=\(\frac{1}{33}\)
mik dang ban moi giai duoc mot bai ha, sorry
\(\frac{27\cdot18\cdot27\cdot103-102\cdot27}{15\cdot33+33\cdot12}\)
=\(\frac{27\cdot\left(18+103-102\right)}{33\cdot\left(15+12\right)}\)
=\(\frac{27\cdot19}{33\cdot27}\)
=\(\frac{19}{33}\)
Bài 3 : a) Tính
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b) Tính :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+\frac{1}{2011}}\)
a, Tính : \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b, Tính : \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c, Tính : \(\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
Tính:
a.A = \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b. B = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c. C = \(\frac{\left(1+2+3+...+99+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
\(\left(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+4\right):\left(\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)\) = ?
1)thực hiện phép tính hợp lí nhất có thể:
\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\right)\)
\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)
\(\Rightarrow D=\frac{1}{2012}\)