tìm số nguyên x,y:
(x-1)\(^2\)+Ix-y-1I<hoặc =0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
bài 1:tìm các cặp số nguyên (x,y)thỏa mãn đồng thời các đk sau:
x+y=5 và Ix+1I+Iy-2I=4
x-y=3 và |x-6|+|y-1|=4
Tìm các số nguyên dương x ; y biết Ix-2y+1I . Ix+4y+3I = 20
bài 1:tìm các cặp số nguyên (x,y)thỏa mãn đồng thời các đk sau:
x+y=5 và Ix+1I+Iy-2I=4
Tìm cá số nguyên x, y biết
a) Ix + 3I + Iy - 1I = 0
b) Ix + 5I + Iy + 1I \(\le\)0
Bài giải
a, \(\left|x+3\right|+\left|y-1\right|=0\)
Mà \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left|y-1\right|\ge0\forall x\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }1\right)\)
b, \(\left|x+5\right|+\left|y+1\right|\le0\)
Mà \(\hept{\begin{cases}\left|x+5\right|\ge0\forall x\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\text{ }\left|x+5\right|+\left|y+1\right|=0\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|x+5\right|=0\\\left|y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Vậy \(\left(x\text{ ; }y\right)=\left(-5\text{ ; }-1\right)\)
Bài 1: Tìm x ∈ Z, biết:
Ix+2I+Ix+5I+Ix+9I+Ix+1I=5x
Bài 2: Chứng tỏ:
a.(a-b+c)-(a+c)
b.(a+b)-(b-a)+c=2a+c
c.-(a+b-c)+(a-b-c)=-2b
d.a(b+c)-a(b+d)=a(c-d)
e.a(b-c)+a(d+c)=a(b+d)
Bài 3: Tìm tất cả các cặp số nguyên (x;y) biết:
a.(x+3).(y-2)=7
b.(x-1).(xy+2)=5
Mọi người giúp mình làm bài với nha! Cảm ơn mn nhìu :D
b.(a+b)-(b-a)+c=2a+c
Xét VT: (a+b)-(b-a)+c = a + b - b + a + c = 2a+c
Mà VP = 2a+c
=> VT = VP
c.-(a+b-c)+(a-b-c)=-2b
Xét VT: -(a+b-c)+(a-b-c) = -a - b + c + a - b - c = -2b
Mà VP = -2b
=> VT = VP
d.a(b+c)-a(b+d)=a(c-d)
Xét VT: a(b+c)-a(b+d) = ab + ac - ab - ad = ac - ad = a(c-d)
Mà VP = a(c-d)
=> VT = VP
e.a(b-c)+a(d+c)=a(b+d)
Xét VT: a(b-c)+a(d+c)= ab -ac + ad + ac = ab + ad = a(b+d)
Mà VP = a(b+d)
=> VT = VP
Tìm x,y
a) Ix-1I + Ix+2I =0
b) I2x-1I + Iy^2-yI = 0
c) Ix+1I + Ix+2I =3
#)Giải :
a) \(\left|x-1\right|+\left|x+2\right|=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b) \(\left|2x-1\right|+\left|y^2-y\right|=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\y^2-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\y^2=y\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\y\in\left\{-1;0;1\right\}\end{cases}}}\)
Tìm các số nguyên x; y (y > 0) biết Ix2 - 1I + (y2 - 3)2 = 2.
Trả lời:
x = .......; y = .........
Nhập các giá trị theo thứ tự, ngăn cách nhau bởi dấu ";"
tìm số nguyên x biết Ix+1I +Ix+2I=1
vì biểu thức có dấu GTTĐ=>[x+1]=1 hoặc=0;[x+2]=1 hoặc =0
nếu [x+1]=1 thì[x+2]=0, ngược lại nếu [x+1]=0 thì[x+2]=1
loai TH [x+1]=1;[x+2]=0
Xét TH [x+1]=0;[x+2]=1=>x=-1
vậy x= -1
a, Tìm x,y,z biết 2x=3y ; 4y=5z và x+y+x=11
b, Tìm x biết Ix+1I+Ix+2I+Ix+2I+Ix+3I=4x
\(\text{Giải}\)
\(2x=3y\Leftrightarrow8x=12y;4y=5z\Leftrightarrow12y=15z\Leftrightarrow8x=12y=15z\)
\(\Leftrightarrow x=\frac{2}{3}y=\frac{8}{15}z\Rightarrow x+y+z=\frac{11}{5}x=11\Leftrightarrow x=5\Rightarrow y=\frac{10}{3};z=\frac{8}{3}\)
\(\text{Vậy: x=5;y=10 phần 3;z=8 phần 3}\)
\(\text{Ta có: trị tuyệt đối của 1 số luôn dương từ đó suy ra 4x dương suy ra x dương}\)
\(\Rightarrow3x+1+2+3=4x\Rightarrow x=1+2+3=6\)
\(\text{Vậy: x=6}\)
\(\text{M đc lắm lần sau tao dell giúp mày nx }\)
b) Ta có: \(\left|x+1\right|\ge x+1;\left|x+2\right|\ge x+2;\left|x+3\right|\ge x+3\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+2\right|+\left|x+3\right|\ge4x+8>4x\)
Mà theo bài ra \(\left|x+1\right|+\left|x+2\right|+\left|x+2\right|+\left|x+3\right|=4x\)
Nên không tìm được x thỏa mãn đề,
Vậy ...