Cho đa thức f(x)=x10-101x9+101x8-101x7+...+101x+2021. Tính f(100)
Cho đa thức f(x)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25. Tính f(100)
f(100)=x8-(100+1)x7+(100+1)x6-(100+1)x5+....+(100+1)x2-(100+1)x+25
=x8-(x+1)x7+(x+1)x6-(x+1)x5+....+(x+1)x2-(x+1)x+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=25
vậy f(100)=25
Cho đa thức f(x) + x^8 - 101x^7+101x^6-101x^5+...+101x^2-101x+25 . Tính f(100)
cho đa thức f(x)=x^8-101x^7+101x^6-101x^5+...+101x+25
Tính f(100)
thôi giúp câu này đê
cho đa thức \(f\left(x\right)=x^{10}+101x^9+101x^8-101x^7+...-101x+101\)
tính f (100)
\(f\left(x\right)=x^{10}+101x^9+101x^8-101x^7+...-101x+101\)
\(=x^{10}-100x^9-x^9+100x^8+x^8-100x^7-x^7+....-101x+101\)
\(=x^9.\left(x-100\right)-x^8\left(x-100\right)+x^7\left(x-100\right)-.....+x\left(x-100\right)-\left(x-101\right)\)
\(\Rightarrow f\left(100\right)=1\)
Ta có:
`101=100+1=x+1`
`⇒f(x)=x^10 - 101 x^9 + ... -101x+101`
`⇒ f(100)= x^10 - (x+1) x^9 + ... -(x+1).x+x+1`
`=x^10 - x^10 - x^9 + ... -x^2 -x +x+1`
`=1`
cho đa thức f(x)=\(x^{10}-101x^9+101x^8-101x^7+...-101x\)\(+101\)
tính f(100)
Ta có : x=100=>101=x+1
Thay vào f(x), ta được : x10 -(x+1)x9 +(x+1)x8 - (x+1)x7 +....-(x+1)x +100
<=> x10 - x10 -x9 +x9 + x8 -x8 -x7 +.... -x2 -x +100
<=> -x+100
=> f(100) = -x+100=-100+100=0
ta có :
\(f\left(x\right)=x^{10}-101x^9+101x^8-...-101x+101\)
\(=x^{10}-x^9-100x^9+x^8+100x^8-...-x-100x+100+1\)
ta có :
\(f\left(100\right)=100^{10}-100^9-100\times100^9+100^8+100\times100^8-...-100-100\times100+100+1\)
\(=100^{10}-100^{10}-100^9+100^9+100^8-...-100^2-100+100+1\)
\(=1\)
vậy f(100)=1
Sai rồi bạn ơi, f(x) =x^10-101x^9+101x^8-101x^7+...-101x+''101'' chứ không phải 100 đâu bạn ơi!
cho đa thức f(x)=x8-101x7+101x6-101x5+101x4-101x3+101x2-101x+2025. Tính f(100)
Cho đa thức f(x)=x8-101x7+101x6-101x5+....101x2-101x+25
Tính f(100)
Giải nhanh mk tik cho
\(f\left(100\right)\Rightarrow x=100\)
\(\Rightarrow x+1=101\)
Thay x + 1 = 101 ta được:
\(f\left(100\right)-x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(=x^8-\left(x^8+x^7\right)+\left(x^7+x^6\right)-\left(x^6+x^5\right)+...+\left(x^3+x^2\right)-\left(x^2+x\right)+25\)
\(=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...+x^3+x^2-x^2-x+25\)
\(=-x+25\)
\(=-100+25\)
\(=-75\)
Cho đa thức f(x)=x^8-101x^7+101x^6-101x^5+.......-101x+25
Tinh f(100)
Cho đa thức:\(F\left(x\right)=x^{10}-101x^9+101x^8-101x^7+....-101x+101\\ \)
Tính \(F\left(100\right)\)
Ta có:
\(F\left(100\right)=100^{10}-101.100^9+101.100^8-101.100^7+...-101.100+101\)
\(=100-\left(100+1\right).100^9+\left(100+1\right).100^8-\left(100+1\right).100^7+...-\left(100+1\right).100+101\)
\(=100^{10}-100^{10}-100^9+100^9+100^8-100^8-100^7+...-100^2-100+101\)
\(=1\)
Ta có:\(101=100+1=x+1\)
\(\Rightarrow F\left(100\right)=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1=1\)