Chứng minh nếu a+b<0 thì ít nhất 1 trong 2 BĐT sau sai a^3+3a^2b>=0,b^3+3ab^2>=0
cho a+b+c=0 chứng minh a^3+b^3+c^3=3ab
Giả sử a^3+b^3+c^3=3abc
<=> a^3+b^3+c^3-3abc=0
<=> (a+b)^3 -3ab(a+b) -3abc +c^3=0
<=>[(a+b)^3+c^3] -3ab(a+b+c) =0
<=> (a+b+c)[(a+b)^2-(a+b)c+c^3] -3ab(a+b+c)=0
<=> (a+b+c)[(a+b)^2-(a+b)c+c^3-3ab]=0
vì a+b+c =0 => đpcm
Cho a,b TM a^2-3ab+2b^2+a-b=0 và a^2-2ab+b^2-5a+7b=0 .Chứng minh ab-12a+15b
Cho x+y = a , x^2+y^2 = b , x^3+y^3 = c. Chứng minh a^3 -3ab +2c =0
Cho biểu thức P=(a+b+c)(a2+b2+c2-ab-bc-ca)
a)Rút gọn P.
b)Chứng minh rằng: Nếu a3+b3+c3=3ab thì a=b=c hoặc a+b+c=0
a) sau khi nhân vô + rút gọn ( câu này gg có á)
P = a3 + b3 + c3 - 3abc
b) a3 + b3 + c3 = 3abc?
a3 + b3 + c3 - 3abc = 0
theo câu b)
(a + b + c)(a2 + b2 + c2 - ab - bc - ca) =0
\(\Rightarrow\) a+b+c=0 hoặc
a2 + b2 + c2 - ab - bc -ca = 0
a2 - 2ab +b2 +b2 - 2bc + c2 + c2 - 2ac +a2 =0
(a-b)2 + (b-c)2 + (c-a)2 = 0
\(\Rightarrow\) a=b=c
Cho x+y=2;x^2+y^2=b;x^3+y^3=c
Chứng minh a^3-3ab+2c=0
Sửa đề: Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\)
Chứng minh: \(a^3-2ab+2c=0\)
Giải:
Ta có:
\(a^3-3ab+2c=\left(x+y\right)^3-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=x^3+y^3+3xy\left(x+y\right)-3\left(x+y\right)\left(x^2+y^2\right)+2\left(x^3+y^3\right)\)
\(=3\left(x^3+y^3\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)=3\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x+y\right)\left(xy-x^2-y^2\right)\)
\(=3\left(x+y\right)\left(x^2-xy+y^2+xy-x^2-y^2\right)=3\left(x+y\right).0\)
\(=0\) (đpcm)
Chứng minh các hằng đẳng thức sau :
a) Nếu x+y = a và xy = b thì x2 + y2 = a2 - 2b và x3 + y3 = a3 - 3ab
b) Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc
c) Nếu a + b + c = 2m thì 4m(m - a ) = b2 + c2 - a2 - 2bc
Ta có:\(x+y=a\)
=>\(x^2+2xy+y^2=a^2\)
=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)
Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)
=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)
=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)
b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)
cho a+b+c=0, chung minh rằng a3+b3+c3=3abc
gợi ý: từ a+b+c=0 suy ra a+b=-c. lập phương hai vế a+b=-c với chú ý 3a2b+3ab2=3ab(a+b)
\(a+b+c=0\)
=>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\)
=>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\)
=>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)
Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
Cho a,b thỏa -1bé hơn hoặc bằng a,b bé hơn hoặc bằng 2 và a+b=3
chứng minh rằng 3a2+b2+3ab-27/4 lớn hơn hoặc bằng 0